Instant Microwave Synthesis of Titania Nanoflowers for Application in DSSCs

Article Preview

Abstract:

Nanoflowers are desirable in light driven applications like Dye Sensitized Solar Cells (DSSCs) due to their large surface area and greater light absorption capabilities. An instant, simple, cheap and environment friendly method of preparing titanium dioxide nanoflowers is presented. The nanoflowers are produced in a time as short as 5 minutes in aqueous conditions without the use of hazardous hydrofluoric acid or organic surfactants at 1 atm. pressure and low temperature of 100°C. Titanium dioxide commercial nanopowders are treated with microwaves in an aqueous sodium hydroxide solution for small durations. The resulting powders are annealed at 450°C in air and characterization is performed using XRD, SEM and Raman spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-18

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] D. Kong, J. Z. Y. Tan, F. Yang, J. Zeng, and X. Zhang, Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4, Applied Surface Science, vol. 277, pp.105-110, (2013).

DOI: 10.1016/j.apsusc.2013.04.010

Google Scholar

[2] S. Sitthisang, S. Komarneni, J. Tantirungrotechai, Y. Dong Noh, H. Li, S. Yin, et al., Microwave-hydrothermal synthesis of extremely high specific surface area anatase for decomposing NOx, Ceramics International, vol. 38, pp.6099-6105, (2012).

DOI: 10.1016/j.ceramint.2012.04.057

Google Scholar

[3] Y. P. Peng, S. L. Lo, H. H. Ou, and S. W. Lai, Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis, J Hazard Mater, vol. 183, pp.754-8, Nov 15 (2010).

DOI: 10.1016/j.jhazmat.2010.07.090

Google Scholar

[4] C. -Y. Liao, S. -T. Wang, F. -C. Chang, H. P. Wang, and H. -P. Lin, Preparation of TiO2 hollow spheres for DSSC photoanodes, Journal of Physics and Chemistry of Solids, vol. 75, pp.38-41, (2014).

DOI: 10.1016/j.jpcs.2013.08.005

Google Scholar

[5] M. Zhu, L. Chen, H. Gong, M. Zi, and B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells, Ceramics International, vol. 40, pp.2337-2342, (2014).

DOI: 10.1016/j.ceramint.2013.08.003

Google Scholar

[6] S. Park, S. An, H. Ko, S. Lee, H. W. Kim, and C. Lee, Enhanced ethanol sensing properties of TiO2/ZnO core–shell nanorod sensors, Applied Physics A, vol. 115, pp.1223-1229, (2013).

DOI: 10.1007/s00339-013-7964-0

Google Scholar

[7] C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, and N. Liu, Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures, Langmuir, vol. 26, pp.12841-8, Aug 3 (2010).

DOI: 10.1021/la100910u

Google Scholar

[8] B. Choudhury and A. Choudhury, Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles, Materials Science and Engineering: B, vol. 178, pp.794-800, (2013).

DOI: 10.1016/j.mseb.2013.03.016

Google Scholar

[9] S. Javed, M. Mujahid, M. Islam, and U. Manzoor, Morphological effects of reflux condensation on nanocrystalline anatase gel and thin films, Materials Chemistry and Physics, vol. 132, pp.509-514, (2012).

DOI: 10.1016/j.matchemphys.2011.11.062

Google Scholar

[10] S. Ribbens, V. Meynen, G. V. Tendeloo, X. Ke, M. Mertens, B. U. W. Maes, et al., Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies, Microporous and Mesoporous Materials, vol. 114, pp.401-409, (2008).

DOI: 10.1016/j.micromeso.2008.01.028

Google Scholar

[11] L. Meng, C. Li, and M. P. Santos, Structural Modification of TiO2 Nanorod Films with an Influence on the Photovoltaic Efficiency of a Dye-Sensitized Solar Cell (DSSC), Journal of Inorganic and Organometallic Polymers and Materials, vol. 23, pp.787-792, (2013).

DOI: 10.1007/s10904-013-9842-9

Google Scholar

[12] J. Huang, Y. Cao, Z. Liu, Z. Deng, and W. Wang, Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires, Chemical Engineering Journal, vol. 191, pp.38-44, (2012).

DOI: 10.1016/j.cej.2012.01.057

Google Scholar

[13] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, Preparation and structure analysis of titanium oxide nanotubes, Applied Physics Letters, vol. 79, pp.3702-3704, Nov 26 (2001).

DOI: 10.1063/1.1423403

Google Scholar

[14] S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, One-dimensional hierarchical nanostructures of TiO(2) nanosheets on SnO(2) nanotubes for high efficiency solid-state dye-sensitized solar cells, Adv Mater, vol. 25, pp.4893-7, Sep 20 (2013).

DOI: 10.1002/adma.201302226

Google Scholar

[15] R. Rahal, A. Wankhade, D. Cha, A. Fihri, S. Ould-Chikh, U. Patil, et al., Synthesis of hierarchical anatase TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity, RSC Advances, vol. 2, p.7048, (2012).

DOI: 10.1039/c2ra21104a

Google Scholar

[16] S. S. Mali, C. A. Betty, P. N. Bhosale, R. S. Devan, Y. -R. Ma, S. S. Kolekar, et al., Hydrothermal synthesis of rutile TiO2 nanoflowers using Brønsted Acidic Ionic Liquid [BAIL]: Synthesis, characterization and growth mechanism, CrystEngComm, vol. 14, p.1920, (2012).

DOI: 10.1039/c2ce06476f

Google Scholar

[17] S. S. Mali, C. A. Betty, P. N. Bhosale, and P. S. Patil, Hydrothermal synthesis of rutile TiO2 with hierarchical microspheres and their characterization, CrystEngComm, vol. 13, p.6349, (2011).

DOI: 10.1039/c1ce05928a

Google Scholar

[18] Z. Wu, Q. Wu, L. Du, C. Jiang, and L. Piao, Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures, Particuology, vol. 15, pp.61-70, (2014).

DOI: 10.1016/j.partic.2013.04.003

Google Scholar

[19] Y. C. Chen, S. L. Lo, and J. Kuo, Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid, Water Res, vol. 45, pp.4131-40, Aug (2011).

DOI: 10.1016/j.watres.2011.05.020

Google Scholar

[20] S. Javed, M. A. Akram, and M. Mujahid, Environment friendly template-free microwave synthesis of submicron-sized hierarchical titania nanostructures and their application in photovoltaics, CrystEngComm, vol. 16, pp.10937-10942, (2014).

DOI: 10.1039/c4ce01826e

Google Scholar

[21] J. Shen, H. Wang, Y. Zhou, N. Ye, G. Li, and L. Wang, Anatase/rutile TiO2 nanocomposite microspheres with hierarchically porous structures for high-performance lithium-ion batteries, RSC Advances, vol. 2, p.9173, (2012).

DOI: 10.1039/c2ra20962d

Google Scholar