The Effect of Substrate on TiO2 Thin Films Deposited by Atomic Layer Deposition (ALD)

Article Preview

Abstract:

ALD is a precision growth technique that can deposit either amorphous or polycrystalline thin films on a variety of substrates. The difference in substrate can cause a variation in the ALD process, even it is carried out using the same reactants and deposition conditions [1]. TiO2 thin films were grown using TTIP (Titanium isopropoxide) ALD on silicon wafers, glass slides, and stainless steel plates in order to study the effect of substrates on the growth of TiO2 with 3,000 deposition cycles, at 300°C.The thin films were analyzed using Xray Diffraction (XRD), Raman Spectroscopy, Atomic Force Microscope (AFM) and Spectroscopic Ellipsometer. From XRD analysis were indicates the main peak for anatase (101) (2θ= 25.3) was observed from the XRD patterns for TiO2 on all substrates. The results show that crystalline TiO2 thin films can easily grow on a crystal substrate rather than on an amorphous substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-151

Citation:

Online since:

February 2015

Export:

Price:

* - Corresponding Author

[1] Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p.121301.

DOI: 10.1063/1.1940727

Google Scholar

[2] Kim, H., H.B.R. Lee, and W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009. 517(8): pp.2563-2580.

DOI: 10.1016/j.tsf.2008.09.007

Google Scholar

[3] Leskela, M. and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges. Angewandte Chemie-International Edition, 2003. 42(45): pp.5548-5554.

DOI: 10.1002/anie.200301652

Google Scholar

[4] Shan, C.X., et al., Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition. Surface and Coatings Technology, 2008. 202(10): pp.2147-2151.

DOI: 10.1016/j.surfcoat.2007.08.078

Google Scholar

[5] Yu, Y., J. Wang, and J.F. Parr, Preparation and properties of TiO2/fumed silica composite photocatalytic materials. Procedia Engineering, 2012. 27(0): pp.448-456.

DOI: 10.1016/j.proeng.2011.12.473

Google Scholar

[6] Qiu, J., S. Zhang, and H. Zhao, Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sensors and Actuators B: Chemical, 2011(0).

DOI: 10.1016/j.snb.2011.08.077

Google Scholar

[7] Rahtu, A. and M. Ritala, Reaction mechanism studies on titanium isopropoxide-water atomic layer deposition process. Chemical Vapor Deposition, 2002. 8(1): pp.21-28.

DOI: 10.1002/1521-3862(20020116)8:1<21::aid-cvde21>3.0.co;2-0

Google Scholar

[8] Stefanov, P., et al., XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316L. Material Chemistry and Physics, 2000. 65(2): p.4.

DOI: 10.1016/s0254-0584(00)00249-2

Google Scholar

[9] Ingo, D., et al., Atomic layer deposition of anatase TiO2 on porous electrodes for dye-sensitized solar cells. Journal of Vacuum Science and Technology, 2012. 31(1): p.5.

DOI: 10.1116/1.4764889

Google Scholar

[10] Aarik, J., et al., Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process. Applied Surface Science, 2000. 161(3-4): pp.385-395.

DOI: 10.1016/s0169-4332(00)00274-9

Google Scholar

[11] Xie, Q., et al., Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O. Journal of Applied Physics, 2007. 102(8): pp.083521-6.

DOI: 10.1063/1.2798384

Google Scholar

[12] Ritala, M., et al., Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films. Chemistry of Materials, 1993. 5(8): pp.1174-1181.

DOI: 10.1021/cm00032a023

Google Scholar

[13] Lee, J., et al., Atomic layer deposition of TiO2 nanotubes and its improved electrostatic capacitance. Electrochemistry Communications, 2010. 12(2): pp.210-212.

DOI: 10.1016/j.elecom.2009.11.026

Google Scholar

[14] Kim, G.M., et al., Nanostructured Pure Anatase Titania Tubes Replicated from Electrospun Polymer Fiber Templates by Atomic Layer Deposition. Chemistry of Materials, 2008. 20(9): pp.3085-3091.

DOI: 10.1021/cm703398b

Google Scholar

[15] Shin, H., et al., Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness. Advanced Materials, 2004. 16(14): pp.1197-1200.

DOI: 10.1002/adma.200306296

Google Scholar

[16] King, D.M., et al., Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor. Powder Technology, 2008. 183(3): pp.356-363.

DOI: 10.1016/j.powtec.2008.01.025

Google Scholar

[17] Xiangbo, M., et al., Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology, 2011. 22(16): p.165602.

DOI: 10.1088/0957-4484/22/16/165602

Google Scholar

[18] Ritala, M., et al., Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films, 1993. 225(1â€"2): pp.288-295.

DOI: 10.1016/0040-6090(93)90172-l

Google Scholar

[19] Schuisky, M., et al., Atomic Layer Chemical Vapor Deposition of TiO[sub 2] Low Temperature Epitaxy of Rutile and Anatase. Journal of The Electrochemical Society, 2000. 147(9): pp.3319-3325.

DOI: 10.1149/1.1393901

Google Scholar

[20] Aarik, J., et al., Morphology and structure of TiO2 thin films grown by atomic layer deposition. Journal of Crystal Growth, 1995. 148(3): pp.268-275.

DOI: 10.1016/0022-0248(94)00874-4

Google Scholar

[21] Yang, J., Y. Huang, and K. Xu, Effect of substrate on surface morphology evolution of Cu thin films deposited by magnetron sputtering. Surface and Coatings Technology, 2007. 201(9-11): pp.5574-5577.

DOI: 10.1016/j.surfcoat.2006.07.227

Google Scholar