Microgrooving of Germanium Wafers Using Laser and Hybrid Laser-Waterjet Technologies

Article Preview

Abstract:

Lasers have the potential for the micromachining of germanium (Ge). However, the thermal damages associated with the laser machining process need to be properly controlled. To minimize the thermal damages, a hybrid laser-waterjet ablation technology has recently been developed for micromachining. This paper presents an experimental study to assess the machining performances in microgrooving of Ge by using a nanosecond laser and the hybrid laser-waterjet technology. The effects of laser pulse energy, pulse overlap and focal plane position on the groove geometry and heat affected zone (HAZ) size are analyzed and discussed. It is shown that the hybrid laser-waterjet technology can give rise to narrow and deep microgrooves with minimum HAZ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] R. Leancu, N. Moldovan, L. Csepregi and W. Lang, Sensors and Actuators A: Physical. 46(1-3) (1995), pp.35-37.

DOI: 10.1016/0924-4247(94)00856-d

Google Scholar

[2] N. Suzuki, Z. Yan, R. Hino, E. Shamoto, and Y. Hirahara, In Conference Record of the 2006 International Symposium on Micro-NanoMechatronics and Human Science, NGO, (2006).

Google Scholar

[3] E.E. Haller, Material Science in Semiconductor Processing. 9(4-5) (2006), pp.408-422.

Google Scholar

[4] D. Rakwal, E. Bamberg, Journal of Materials Processing Technology. 209(8) (2009), pp.3740-3751.

Google Scholar

[5] J. Yan, K. Maekawa, J. Tamaki and T. Kuriyagawa, Journal of Micromechanics and Microengineering. 15(10) (2005), p.1925-(1931).

Google Scholar

[6] W. Lang, R. Leancu, U. Schaber, G. Wiedamann and H.U. Kaufl, Journal of Micromechanics and Microengineering. 6(1) (1996), pp.46-48.

DOI: 10.1088/0960-1317/6/1/008

Google Scholar

[7] L.M. Wee, E.Y.K. Ng, A.H. Prathama and H. Zheng, Optics & Laser Technology. 43(1) (2011), pp.62-71.

Google Scholar

[8] S. Manicham, J. Wang and C.Z. Huang, Journal of Engineering Manufacture. 227(11) (2013), pp.1714-1723.

Google Scholar

[9] K. Diener, L. Gernandt, J. -P. Moeglin and P. Ambs, Optics and Lasers in Engineering. 43(11) (2005), pp.1179-1192.

DOI: 10.1016/j.optlaseng.2004.12.008

Google Scholar

[10] V. Craciun, D. Craciun, M.C. Bunescu, C. Boulmer-Leborgne and J. Hermann, Physical Review B. 58(11) (1998), pp.6787-6790.

DOI: 10.1103/physrevb.58.6787

Google Scholar

[11] V. Tangwarodomnukun, J. Wang, C.Z. Huang and H.T. Zhu, International Journal of Machine Tools & Manufacture. 56 (2012), pp.39-49.

Google Scholar

[12] V. Tangwarodomnukun, J. Wang, C.Z. Huang and H.T. Zhu, International Journal of Machine Tools & Manufacture. 79 (2014), pp.1-16.

Google Scholar

[13] F.P. Gagliano and U.C. Paek, Applied Optics. 13(2) (1974), pp.274-279.

Google Scholar

[14] Q. Wu, J. Wang and C.Z. Huang, Proc IMechE Part B: Journal of Engineering Manufacture, 228(6) (2014), pp.903-917.

Google Scholar

[15] V. Semak and A. Matsunawa, Journal of Physics D: Applied Physics. 30 (1997), pp.2541-2552.

Google Scholar