Microstructure of Thermoplastic Composites Reinforced with Wool and Wood

Article Preview

Abstract:

In the last decades the studies on thermoplastic composites reinforced with natural fibres have been mostly focused on vegetable lignocellulosic or cellulosic fibres. These materials provide eco-sustainable solutions for a large range of applications and have been actually adopted by multiple industries. The interest on fibres of animal origin is more recent and research on composites reinforced with these fibres predominantly composed of keratin, such as wool, feathers or silk, is increasing in virtue of some advantageous properties that may overcome some of the intrinsic limitations from vegetable fibres. The combined use of vegetable and animal fibres in composites appropriate for melt blending processing is at early stages of research. After chemical treatments, the fibres of animal origin have been mostly applied as binders between vegetable fibres and polymers, not as main constituents of these composites. The use of both types of fibres simultaneously in composites of thermoplastic matrices is the subject of the present study wherein the fibres of animal origin (wool) are different kinds of residues from a textile industry and the fibres of vegetable origin (wood) are residues from carpentry activities. The chemical composition, the macro and microstructure of the fibres is analyzed, as well as that of composites that combine non-biodegradable and biodegradable polymers with diverse ratios of fibres in different conditions (wool as cards, yarns and felt cloths; wood as sawdust). The addition of coupling agents to enhance the compatibility between wool, wood and different polymers is also analysed.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-112

Citation:

Online since:

April 2019

Export:

* - Corresponding Author

[1] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv. 3 (2017) e1700782.

DOI: 10.1126/sciadv.1700782

Google Scholar

[2] L.C.M. Lebreton, J. van der Zwet, J.-W. Damsteeg, B. Slat, A. Andrady, J. Reisser, River plastic emissions to the world's oceans, Nat. Commun. 8 (2017) 15611.

DOI: 10.1038/ncomms15611

Google Scholar

[3] S.M. El Haggar, M.A. Kamel, Wood Plastic Composites, in: Adv. Compos. Mater. - Anal. Nat. Man-Made Mater., 2009: p.325–344.

Google Scholar

[4] M.P. Wolcott, A technology review of WPC, 33rd Int. Part. Mater. Symp. (1999) 103–111.

Google Scholar

[5] F.P. Mantia, M. Morreale, Green composites: A brief review, Compos. Part A Appl. Sci. Manuf. 42 (2011) 579–588.

Google Scholar

[6] A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24 (1999) 221–274.

Google Scholar

[7] A. Ashori, Wood-plastic composites as promising green-composites for automotive industries!, Bioresour. Technol. 99 (2008) 4661–4667.

DOI: 10.1016/j.biortech.2007.09.043

Google Scholar

[8] O. Faruk, A.K. Bledzki, H.-P. Fink, M. Sain, Progress Report on Natural Fiber Reinforced Composites, Macromol. Mater. Eng. 299 (2014) 9–26.

DOI: 10.1002/mame.201300008

Google Scholar

[9] U.S. Bongarde, V.D. Shinde, Review on natural fiber reinforcement polymer composites, Int. J. Eng. Sci. Innov. Technol. 3 (2014) 431–436.

Google Scholar

[10] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int. J. Polym. Sci. 2015 (2015) 1–15.

DOI: 10.1155/2015/243947

Google Scholar

[11] L.W. Gallagher, A.G. McDonald, The effect of micron sized wood fibers in wood plastic composites, Maderas. Cienc. Y Tecnol. 15 (2013) 0–0.

DOI: 10.4067/S0718-221X2013005000028

Google Scholar

[12] S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, C. Krause, M. Wolcott, Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites, J. Appl. Polym. Sci. 110 (2008) 1085–1092.

DOI: 10.1002/app.28720

Google Scholar

[13] G. Martins, F. Antunes, A. Mateus, S. Baptista, C. Malça, Optimization of a wood plastic composite to produce a new dynamic shading system, in: Nat. Fibres Adv. Sci. Technol. Towar. Ind. Appl., RILEM Bookseries, 2016: p.343–350.

DOI: 10.1007/978-94-017-7515-1

Google Scholar

[14] G. Siqueira, J. Bras, A. Dufresne, Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers (Basel). 2 (2010) 728–765.

DOI: 10.3390/polym2040728

Google Scholar

[15] L. Gil, Cork composites: A review, Materials (Basel). 2 (2009) 776–789.

DOI: 10.3390/ma2030776

Google Scholar

[16] C.-S. Wu, Preparation and Characterizations of Polycaprolactone/ Green Coconut Fiber Composites, J Appl Polym Sci. 115 (2010) 948–956.

Google Scholar

[17] A.W.M. Kahar, H. Ismail, High-density polyethylene/natural rubber blends filled with thermoplastic tapioca starch: Physical and isothermal crystallization kinetics study, J. Vinyl Addit. Technol. 22 (2016) 191–199.

DOI: 10.1002/vnl.21422

Google Scholar

[18] S.S. Ray, Environmentally Friendly Polymer Nanocomposites: Types, Processing and Properties, Woodhead Publishing, U. K., (2013).

Google Scholar

[19] D.E. Pendleton, T. a Hoffard, T. Adcock, B. Woodward, M.P. Wolcott, Durability of an extruded HDPE/wood composite, For. Prod. J. 52 (2002) 21–27.

Google Scholar

[20] G. Martins, F. Antunes, A. Mateus, C. Malça, Optimization of a Wood Plastic Composite for Architectural Applications, Procedia Manuf. 12 (2017) 203–220.

DOI: 10.1016/j.promfg.2017.08.025

Google Scholar

[21] Q. Wang, R. Ou, X. Shen, Y. Xie, Plasticizing cell walls as a strategy to produce wood-plastic composites with high wood content by extrusion processes, BioResources. 6 (2011) 3621–3622.

Google Scholar

[22] S.K. Yeh, S. Agarwal, R.K. Gupta, Wood-plastic composites formulated with virgin and recycled ABS, Compos. Sci. Technol. 69 (2009) 2225–2230.

DOI: 10.1016/j.compscitech.2009.06.007

Google Scholar

[23] M. Pracella, M.M.U. Haque, V. Alvarez, Functionalization, compatibilization and properties of polyolefin composites with natural fibers, Polymers (Basel). 2 (2010) 554–574.

DOI: 10.3390/polym2040554

Google Scholar

[24] G. Cicala, G. Cristaldi, A. Latteri, Composites Based on Natural Fibre Fabrics, Woven Fabr. Eng. (2010) 317–342.

DOI: 10.5772/10465

Google Scholar

[25] J. Feng, Q. Shi, Y. Chen, X. Huang, Mold Resistance and Water Absorption of Wood/HDPE and Bamboo/HDPE Composites, J. Appl. Sci. 14 (2014) 776–783.

DOI: 10.3923/jas.2014.776.783

Google Scholar

[26] K. Klouda, Composite Nanofibers: Polymer-Wood Dust (Green Composites), J Mat Sci Eng A. 3 (2013) 659–666.

Google Scholar

[27] S.H. Lee, Y. Teramoto, T. Endo, Cellulose nanofiber-reinforced polycaprolactone/ polypropylene hybrid nanocomposite, Compos. Part A Appl. Sci. Manuf. 42 (2011) 151–156.

DOI: 10.1016/j.compositesa.2010.10.014

Google Scholar

[28] S. Migneault, A. Koubaa, F. Erchiqui, A. Chaala, K. Englund, M.P. Wolcott, Effects of processing method and fiber size on the structure and properties of wood-plastic composites, Compos. Part A Appl. Sci. Manuf. 40 (2009) 80–85.

DOI: 10.1016/j.compositesa.2008.10.004

Google Scholar

[29] H. Bouafif, A. Koubaa, P. Perré, A. Cloutier, Effects of fiber characteristics on the physical and mechanical properties of wood plastic composites, Compos. Part A Appl. Sci. Manuf. 40 (2009) 1975–1981.

DOI: 10.1016/j.compositesa.2009.06.003

Google Scholar

[30] H. Balakrishnan, M.R. Husin, M.U. Wahit, M.R. Abdul Kadir, Maleated High Density Polyethylene Compatibilized High Density Polyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization, Polym. Plast. Technol. Eng. 52 (2013) 774–782.

Google Scholar

[31] F.M. Barreiros, A.G. Martins, M. Matos, J. Mascarenhas, M.T. Vieira, Preparing MIM feedstocks for bio-applications using an agar-based binder, Mater. Sci. Forum. 587–588 (2008) 385–389.

DOI: 10.4028/www.scientific.net/MSF.587-588.385

Google Scholar

[32] P. Komposit, P. Termaleik, G. Lalang, K. Penyediaan, Synthesis and Characterisation of Maleated Polypropylene / Lalang Fiber / Polypropelyne Composites : Optimisation Preparation Conditions and Their Properties, 16 (2012) 24–30.

Google Scholar

[33] T.J. Keener, R.K. Stuart, T.K. Brown, Maleated coupling agents for natural fibre composites, Compos. Part A Appl. Sci. Manuf. 35 (2004) 357–362.

DOI: 10.1016/j.compositesa.2003.09.014

Google Scholar

[34] S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review, Polym. Eng. Sci. 29 (2009) 1253–1272.

Google Scholar

[35] D. Loof, M. Hiller, H. Oschkinat, K. Koschek, Quantitative and qualitative analysis of surface modified cellulose utilizing TGA-MS, Materials (Basel). 9 (2016) 1–14.

DOI: 10.3390/ma9060415

Google Scholar

[36] B. Unger, M. Bücker, S. Reinsch, T. Hübert, Chemical aspects of wood modification by sol-gel-derived silica, Wood Sci. Technol. 47 (2013) 83–104.

DOI: 10.1007/s00226-012-0486-7

Google Scholar

[37] M.Y. Abdelaal, E.H. Elmossalamy, S.O.S. Bahaffi, Enhancement of Polyolefins Compatibility with Natural Fibers through Chemical Modification, Am. J. Polym. Sci. 2 (2012) 102–108.

DOI: 10.5923/j.ajps.20120205.04

Google Scholar

[38] J. Cañavate, J. Aymerich, N. Garrido, X. Colom, J. Macanás, G. Molins, M. Álvarez, F. Carrillo, Properties and optimal manufacturing conditions of chicken feathers/poly(lactic acid) biocomposites, J. Compos. Mater. 50 (2016) 1671–1683.

DOI: 10.1177/0021998315595534

Google Scholar

[39] L. Conzatti, F. Giunco, P. Stagnaro, M. Capobianco, M. Castellano, E. Marsano, Polyester-based biocomposites containing wool fibres, Compos. Part A Appl. Sci. Manuf. 43 (2012) 1113–1119.

DOI: 10.1016/j.compositesa.2012.02.019

Google Scholar

[40] M. Saxena, A. Pappu, Composite Materials from Natural Resources : Recent Trends and Future Potentials, Adv. Compos. Mater. - Anal. Nat. Man-Made Mater. (2011) 121–162.

DOI: 10.5772/18264

Google Scholar

[41] F. Bertini, M. Canetti, A. Patrucco, M. Zoccola, Wool keratin-polypropylene composites: Properties and thermal degradation, Polym. Degrad. Stab. 98 (2013) 980–987.

DOI: 10.1016/j.polymdegradstab.2013.02.011

Google Scholar

[42] M. Pasha, Characterization of natural fiber (sheep wool)-reinforced composites at different operating conditions, J. Ind. Text. 0 (2014) 1–22.

DOI: 10.1177/1528083714540698

Google Scholar

[43] R. Govindaraju, S. Jagannathan, M. Chinnasamy, P. Kandhavadivu, Optimization of Process Parameters for Fabrication of Wool Fiber-Reinforced Polypropylene Composites with Respect to Mechanical Properties, 9 (2014) 126–133.

DOI: 10.1177/155892501400900315

Google Scholar

[44] J.H. Bradbury, The Morphology and Chemical Structure of Wool, Pure Appl. Chem. 46 (1976).

DOI: 10.1351/pac197646020247

Google Scholar

[45] W.P. Limited, Handbook of textile and industrial dyeing, Woodhead Publishing Limited, 2009.

DOI: 10.1016/B978-1-84569-385-5.50021-0

Google Scholar

[46] E.S. Wilks, ed., Wool, in: Ind. Polym. Handb. Prod. Process. Appl., Vol 3 Biop, Wiley-VCH, 2001: p.2265–2300.

Google Scholar

[47] M. Amin Omri, A. Triki, M. Ben Hassen, M. Arous, A. Bulou, Influence of wool and thermo-binder fibers relative fractions on the adhesion of non-woven Alfa fibers reinforced unsaturated polyester hybrid composites, Phys. E Low-Dimensional Syst. Nanostructures. 84 (2016) 316–323.

DOI: 10.1016/j.physe.2016.07.014

Google Scholar

[48] C. Santulli, F. Sarasini, J. Tirillò, T. Valente, M. Valente, a. P. Caruso, M. Infantino, E. Nisini, G. Minak, Mechanical behaviour of jute cloth/wool felts hybrid laminates, Mater. Des. 50 (2013) 309–321.

DOI: 10.1016/j.matdes.2013.02.079

Google Scholar

[49] J.H. Johnston, F.M. Kelly, J. Moraes, T. Borrmann, D. Flynn, Conducting polymer composites with cellulose and protein fibres, Curr. Appl. Phys. 6 (2006) 587–590.

DOI: 10.1016/j.cap.2005.11.067

Google Scholar

[50] G. Rajkumar, J. Srinivasan, L. Suvitha, Development of novel silk/wool hybrid fibre polypropylene composites, Iran. Polym. J. (English Ed. 22 (2013) 277–284.

DOI: 10.1007/s13726-013-0128-4

Google Scholar

[51] J. Korol, D. Burchart-Korol, M. Pichlak, Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application, J. Clean. Prod. 113 (2016) 144–152.

DOI: 10.1016/j.jclepro.2015.11.101

Google Scholar