Resilience in Mechanical Engineering - A Concept for Controlling Uncertainty during Design, Production and Usage Phase of Load-Carrying Structures

Article Preview

Abstract:

Resilience as a concept has found its way into different disciplines to describe the ability of an individual or system to withstand and adapt to changes in its environment. In this paper, we provide an overview of the concept in different communities and extend it to the area of mechanical engineering. Furthermore, we present metrics to measure resilience in technical systems and illustrate them by applying them to load-carrying structures. By giving application examples from the Collaborative Research Centre (CRC) 805, we show how the concept of resilience can be used to control uncertainty during different stages of product life.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-198

Citation:

Online since:

November 2018

Export:

* - Corresponding Author

[1] M.S. Phadke: Quality engineering using robust design, Prentice Hall, Upper Saddle River, NJ (1995).

Google Scholar

[2] A. Ben-Tal, L. El Ghaoui and A. Nemirovksi: Robust Optimization, Princeton University Press, Princeton and Oxford (2009).

Google Scholar

[3] E. Hollnagel: Prologue: the scope of resilience engineering,, Resilience engineering in practice: A guidebook (2011).

Google Scholar

[4] K. Thoma, ed.: Resilien-Tech:» Resilience by Design «: a strategy for the technology issues of the future, Herbert Utz Verlag (2014).

Google Scholar

[5] A. Bozza, D. Asprone and F. Fabbrocino: Urban resilience: A civil engineering perspective, Sustainability 9:1,103 (2017).

DOI: 10.3390/su9010103

Google Scholar

[6] K. Tierney and M. Bruneau: Conceptualizing and measuring resilience: A key to disaster loss reduction, TR News 250 (2007).

Google Scholar

[7] G.P. Cimellaro, A.M. Reinhorn and M. Bruneau: Framework for analytical quantification of disaster resilience, Engineering Structures 32:11 (2010), p.3639–3649.

DOI: 10.1016/j.engstruct.2010.08.008

Google Scholar

[8] T. Ummenhofer and T. Zinke: Nachhaltigkeit und Resilienz–Zukünftige Kriterien bei der integrativen Bewertung von Brücken, Stahlbau 83:2 (2014), p.74–82.

DOI: 10.1002/stab.201410141

Google Scholar

[9] E. Hollnagel, D.D. Woods and N. Leveson: Resilience engineering: Concepts and precepts, Ashgate Publishing, Ltd., Aldershot (2007).

Google Scholar

[10] K. Thoma, B. Scharte, D. Hiller and T. Leismann: Resilience Engineering as Part of Security Research: Definitions, Concepts and Science Approaches, European Journal for Security Research 1 (2016), p.3–19.

DOI: 10.1007/s41125-016-0002-4

Google Scholar

[11] E. Todini: Looped water distribution networks design using a resilience index based heuristic approach, Urban water 2:2 (2000), p.115–122.

DOI: 10.1016/s1462-0758(00)00049-2

Google Scholar

[12] J.P.G. Sterbenz, E.K. Çetinkaya, M.A. Hameed, A. Jabbar, S. Qian and J. P. Rohrer: Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation, Telecommunication Systems 52:2 (2013).

DOI: 10.1007/s11235-011-9573-6

Google Scholar

[13] Z. Hu and P. K. Verma: Topological resilience of complex networks against failure and attack, in IEEE 5th International Conference on Advanced Networks and Telecommunication Systems (ANTS) (2011).

DOI: 10.1109/ants.2011.6163658

Google Scholar

[14] A. Broido and kc claffy: Internet topology: connectivity of IP graphs, in SPIE International Symposium on Convergence of IT and Communication (2001), p.172–187.

Google Scholar

[15] A. Ruszczyński and A. Shapiro, ed.: Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, Elsevier, Amsterdam (2003).

Google Scholar

[16] S.G. Nurre, T.C. Sharkey and J.E. Mitchell: Supply Chain Management and Logistics: Innovative Strategies and Practical Solutions, chapter Increasing the Resiliency of Local Supply Chain Distribution Networks against Multiple Hazards, CRC Press, Boca Raton, FL (2015).

DOI: 10.1201/b19080-7

Google Scholar

[17] M. Ouyang and Y. Fang. A mathematical framework to optimize critical infrastructure resilience against intentional attacks. Computer-Aided Civil and Infrastructure Engineering 32:11 (2017), p.909–929.

DOI: 10.1111/mice.12252

Google Scholar

[18] B.E.B. Piper: Optimization Methods for Improving the Resilience of Civil Infrastructure Systems Subject to Natural Hazards, PhD thesis, NC State University (2013).

Google Scholar

[19] W. Yuan, J. Wang and F. Qiu: Robust optimization-based resilient distribution network planning against natural disasters, IEEE Transactions on Smart Grid 7:6 (2016).

DOI: 10.1109/tsg.2015.2513048

Google Scholar

[20] T. Ganesan and I. Elamvazuthi: A multi-objective approach for resilience-based plant design optimization, Quality Engineering 29:4 (2017), p.656–671.

DOI: 10.1080/08982112.2016.1255331

Google Scholar

[21] H. Afshari, R. Farel and Q. Peng: Improving the resilience of energy flow exchanges in eco-industrial parks: Optimization under uncertainty, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 3:2,11 (2017).

DOI: 10.1115/1.4035729

Google Scholar

[22] P. Chołda and P. Jaglarz: Energy-efficiency versus resilience: risk awareness view on dimensioning of optical networks with a sleep mode, Photonic Network Communications 30 (2015), p.43–58.

DOI: 10.1007/s11107-015-0495-1

Google Scholar

[23] J. Ahern: From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world, Landscape and urban Planning 100:4 (2011), p.341–343.

DOI: 10.1016/j.landurbplan.2011.02.021

Google Scholar

[24] M.-V. Florin and I. Linkov, ed.: IRGC resource guide on resilience. Lausanne: EPFL International Risk Governance Center (IRGC) (2016). Available from: irgc.epfl.ch.

DOI: 10.1007/978-1-4020-6799-0_6

Google Scholar

[25] A.A. Ganin, E. Massaro, A. Gutfraind, N. Steen, J.M. Keisler, A. Kott, R. Mangoubi and I. Linkov: Operational resilience: concepts, design and analysis, Nature Scientific reports 6:19540 (2016).

DOI: 10.1038/srep19540

Google Scholar

[26] T. Wang, Z. Zhang and F. Shao: Survivability Analysis on a Cyber-Physical System, Machines 5:3,17 (2017).

Google Scholar

[27] P. Schlemmer and H. Kloberdanz: Adaptivity of resilient load-carrying systems, submitted to Uncertainty in Mechanical Engineering III, Trans Tech Publications (2018).

Google Scholar

[28] L.C. Altherr, P. Leise, M.E. Pfetsch and A. Schmitt: Algorithmic Design and Resilience Assessment of Energy-Efficient High-Rise Water Supply Systems, submitted to Uncertainty in Mechanical Engineering III, Trans Tech Publications (2018).

DOI: 10.4028/www.scientific.net/amm.885.211

Google Scholar

[29] T. Gally, A. Kuttich, M.E. Pfetsch, M. Schaeffner and S. Ulbrich: Optimal Placement of Active Bars for Buckling Control in Truss Structures under Bar Failures, submitted to Uncertainty in Mechanical Engineering III, Trans Tech Publications (2018).

DOI: 10.4028/www.scientific.net/amm.885.119

Google Scholar

[30] Y. Kanno: Redundancy optimization of finite-dimensional structures: Concept and derivative-free algorithm, Journal of Structural Engineering, 143:1 (2017).

DOI: 10.1061/(asce)st.1943-541x.0001630

Google Scholar

[31] A. Ben-Tal and A. Nemirovski: Robust truss topology design via semidefinite programming, SIAM Journal on Optimization 7: 4 (1997), p.991–1016.

DOI: 10.1137/s1052623495291951

Google Scholar

[32] MOSEK ApS. The MOSEK C optimizer API manual. Version 8.1 (Revision 25) (2017). Available from: http://docs.mosek.com/8.1/capi/index.html.

Google Scholar

[33] E. Abele and A. Bretz: Werkzeugverlagerung beim Reiben - Entwicklung sensorischer Werkzeuge zur Erkennung von Prozessstörungen, Werkstattstechnik online: wt, Springer VDI Verlag, Düsseldorf, 107: 1-2 (2017), p.21–26.

DOI: 10.37544/1436-4980-2017-01-02-23

Google Scholar

[34] M. Mitschke and W. Henning: Dynamik der Kraftfahrzeuge, Springer, Wiesbaden, Germany (2014).

Google Scholar

[35] N. Brötz, P. Hedrich and P.F. Pelz: Integrated Fluid Dynamic Vibration Absorber for Mobile Applications, in 11.IFK – Proceedings Vol.1 (2018).

Google Scholar

[36] P. Hedrich, E. Lenz and P. F. Pelz: Besser geht's nicht - Pareto-optimale aktive Vertikaldynamiktechnologie zur Minimierung von Kinetose beim autonomen Fahren, to appear in ATZ- Automobiltechnische Zeitschrift 120.7 (2018).

DOI: 10.1007/s35148-018-0077-5

Google Scholar

[37] P. Hedrich, M. Johe and P.F. Pelz: Design and realization of an adjustable fluid powered piston for an active air spring, in 10th International Fluid Power Conference, Dresden, Germany (2016), p.571–582.

Google Scholar

[38] E. Abele and C. Bölling: Simulation der Ventilsitzbearbeitung am Zylinderkopf, VDI-Z Integrierte Produktion, Springer VDI Verlag, Düsseldorf, 157 (I) (2015), p.59–63.

Google Scholar

[39] C. Bölling: Control of Uncertainty in High Precision Machining of Valve Guide and Seat in a Combustion Engine, in 1st Sino-German Forum of Manufacturing SGFM, May 22nd - 25th, Nanjing, Taicang, China (2017).

Google Scholar