Experimental Investigation of Heat Transfer of Refrigerant Fluid Pulsating Heat Pipe

Article Preview

Abstract:

Heat transfer performances of a pulsating heat pipe (PHP) having internal and external diameter with 4.5 mm and 6 mm with various contents of refrigerant are experimentally investigated. The working fluid as R404A refrigerant was filled in the volume ratios from 0% to 80% and the heat input was controlled in the range from 10 W to 80 W. Obtained results exhibited the ability of R404A refrigerant can enhance the thermal performance in steady state condition. The average temperature difference of the evaporating section and condensing section in the 80% filling volume ratio decreased from 9.5 °C to 2.5 °C when the heating power increase from 10 W to 80 W. The thermal resistance of evaporator and condenser decreased with an increase of the heat input as well. For other filling volume ratios, the trend of temperature difference and thermal resistance was similar to that of the 80% volume filling ratio. Considering the same heat input, the highest heat transfer performance was found at the 80% volume filling ratio. Refrigerant with a relatively low dynamic consistency can lead to relatively high velocity in the PHP that can reduce the temperature difference between the evaporating section and condensing section.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] H. Akachi, Structure of a heat pipe, US PateNt (1990) Patent Number 4921041.

Google Scholar

[2] M. B. Shafii, A. Faghri, Y. Zhang, Analysis of heat transfer in unlooped and looped pulsating heat pipes, Inter. J. Numer. Meth. Heat Fluid Flow, 12 (2002) 585-609.

DOI: 10.1108/09615530210434304

Google Scholar

[3] Y. Ji, H. Ma, F. Su, G. Wang, Particle size effect on heat transfer performance in an oscillating heat pipe, J. Exp. Therm. Fluid Sci. 35 (2011) 724-727.

DOI: 10.1016/j.expthermflusci.2011.01.007

Google Scholar

[4] S. Arabnejad, R. Rasoulian, M. B. Shafii, Y. Saboohi, Numerical investigation of the performance of a U-shaped pulsating heat pipe, J. Heat Transf. Eng. 31 (2010) 1155-1164.

DOI: 10.1080/01457631003689278

Google Scholar

[5] H. Jamshidi, S. Arabnejad, M. B. Shafii, Y. Saboohi, Thermal characteristics of closed loop pulsating heat pipe with nanofluids, J. Enhanc. Heat Transf. 18 (2011) 221-237.

DOI: 10.1615/jenhheattransf.v18.i3.40

Google Scholar

[6] M. Mameli, M. Marengo, S. Zinna, Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings, Inter. J. Heat Mass Transf. 55 (2012) 1036-1047.

DOI: 10.1016/j.ijheatmasstransfer.2011.10.006

Google Scholar

[7] T. Katpradit, T. Wongratanaphisan, P. Terdtoon, P. Kamonpet, A. Polchai, A. Akbarzadeh, Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state, Appl. Therm. Eng. 25 (2005) 2138-2151.

DOI: 10.1016/j.applthermaleng.2005.01.009

Google Scholar

[8] H. H. Yang, S. Khandekar, M. Groll, Performance characteristics of pulsating heat pipes as integral thermal spreaders, Int. J. Therm. Sci. 48 (2009) 815-824.

DOI: 10.1016/j.ijthermalsci.2008.05.017

Google Scholar

[9] J. H. Liu, F. M. Shang, D. Y. Liu, Experimental study on enhanced heat transfer characteristics of synergistic coupling between the pulsating heat pipes, Energ. Proc. 16 (2012) 1510-1516.

DOI: 10.1016/j.egypro.2012.01.237

Google Scholar

[10] K. H. Chien, Y. T. Lin, Y. R. Chen, K. S. Yang, C. C. Wang, A novel design of pulsating heat pipe with fewer turns applicable to all orientations, Int. J. Heat Mass Trans. 55 (2012) 5722-5728.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.068

Google Scholar

[11] C. Wilson, B. Borgmeyer, R. A. Winholtz, Thermal and visual observation of water and acetone oscillating heat pipes, J. Heat Trans. 133(6) (2011) 061502.

DOI: 10.1115/1.4003546

Google Scholar

[12] C. Y. Tseng, K. S. Yang, K. H. Chien, M. S. Jeng, C. C. Wang, Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters, Exp. Therm. Fluid Sci. 54 (2014) 85–92.

DOI: 10.1016/j.expthermflusci.2014.01.019

Google Scholar

[13] K. S. Yang, Y. C. Cheng, M. C. Liu, J. C. Shyu, Micro pulsating heat pipes with alternate micro channel widths, Appl. Therm. Eng. 83 (2015) 131–138.

DOI: 10.1016/j.applthermaleng.2015.03.020

Google Scholar

[14] Y. H. Lin, S. W. Kang, H. L. Chen, Effect of silver nano-fluid on pulsating heat pipe thermal performance, Appl. Therm. Eng. 28 (2008) 1312–1317.

DOI: 10.1016/j.applthermaleng.2007.10.019

Google Scholar

[15] B. Verma, V. L. Yadav, K. K. Srivastava, Experimental study on thermal performance of pulsating heat pipe with Al2O3–deionized water nanofluid at different orientations, J. Enhanc. Heat Transf. 20(2) (2013) 153–163.

DOI: 10.1615/jenhheattransf.2013006540

Google Scholar