The Effects of Reduction Parameter to Composite Pelet of Iron Ore and Coal Using Single Conveyor Belt Hearth Furnace

Article Preview

Abstract:

Iron ores should be separated from oxygen and impurities which are coming along during the mining process. The separation process is known as reduction. There are two types of reduction process, and the most common is direct reduction process (DRP). There are several parameters in DRP which will determine the quantities of the product known as direct reduction iron (DRI). This worked discussed the effect of reduction temperature and pellet heap to the quantities of DRI using single conveyer belt Hearth furnace. The worked was done in laboratory scale using composite pellets with 14 mm in diameter. The ratio of iron ore to coal in the composite pellet is 1 to 1. The reduction process temperatures are 500oC, 700oC and 900oC. The reduction time is 25 minutes. While the pellets heap are also varied to 1, 3, 5, 7, 8 and 9 layers. The results show that DRI was formed in 700OC and the quantities of DRI are in line with the reduction temperatures and layers of composite pellets heap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

June 2016

Export:

Price:

* - Corresponding Author

[1] J.W. Soedarsono, E.M. Rajagukguk, L.P.P. Batubara, L.J. Romualdo, Adji Kawigraha, R.D. Sulamet-Ariobimo, A. Rustandi, S. Tjahyono, A. Zamri, Reduction Process of South Borneo Lump Ore using Renewable Coconut Shell Reductor in Rotary Kiln, in press.

DOI: 10.4028/www.scientific.net/msf.893.195

Google Scholar

[2] R.K. Paramaguru, R.K. Gagali, H.S. Ray, Influence of Slag and Foam Characteristic on Reduction of FeO Containing Slags by Solid Carbon, Met. Mater Trans B. 28B(1997) 805-810.

DOI: 10.1007/s11663-997-0007-5

Google Scholar

[3] I. Sohn, R.J. Fruehan, The Reduction of Iron Oxide by Volatiles in a Rotary Hearth Furnace Process Part I – The Role and Kinetics of Volatile Reduction, Met Mater Trans B. 36(2005) 605-612.

DOI: 10.1007/s11663-005-0051-y

Google Scholar

[4] J. W. Soedarsono, A. Kawigraha, R.D. Sulamet-Ariobimo, D. Johansyah, G.D. Kusuma, Suprayogi, A. Yosi, N.L. Saputro, A.T. Sidiq, Erwin, and D. Natanael, Potential Indonesia Ores as Raw Material for Producing Iron Nugget, AMR. 652-654(2012).

DOI: 10.4028/www.scientific.net/amr.652-654.2529

Google Scholar

[5] J. W. Soedarsono, V. Astini, F. Fazri, A. Kawigraha, R.D. Sulamet-Ariobimo, A. Rustandi, and S. Tjahyono, Effect of Carbon Content in Direct Reduction Process of Limonite Iron Oxide to Produce Pig Iron Substitute for Thin Wall Ductile Iron Process, AMR, 887-888(2014).

DOI: 10.4028/www.scientific.net/amr.887-888.281

Google Scholar

[6] A. Kawigraha, J.W. Soedarsono, S. Harjanto, Pramusanto, Reduction of Composite Pellet Containing Indonesia Lateritic Iron Ore as Raw Material for Producing TWDI, AMM. 281 (2013) 490-495.

DOI: 10.4028/www.scientific.net/amm.281.490

Google Scholar

[7] J.W. Soedarsono, R. Simarmata, A. Kawigraha, R.D. Sulamet-Ariobimo, A. Rustandi, S. Tjahyono, A. Zamri, Effect of Reduction Process Parameter in Direct Reduction Process of Laterite to Produce Substitute Pig Iron for Thin Wall Ductile Iron Material, AMR, 893(2014).

DOI: 10.4028/www.scientific.net/amr.893.95

Google Scholar

[8] A. Kawigraha, J.W. Soedarsono, S. Harjanto, Pramusanto, Reduction of Composite Pellet Containing Indonesia Lateritic Iron Ore as Raw Material for Producing TWDI, AMM, 281(2013), 490-495.

DOI: 10.4028/www.scientific.net/amm.281.490

Google Scholar

[9] N. Narçin, S. Aydin, K. Şeşen, F. Dikeç; Reduction of iron ore pellets with domestic lignite coal in a rotary tube furnace; Int. J. Miner. Process; vol. 43; pp.49-59; (1995).

DOI: 10.1016/0301-7516(94)00045-2

Google Scholar

[10] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of Iron Oxide in Carbon Monoxide Atmosphere – Reaction Controlled Kinetics, Fuel Process Technol. 86(2004) 33-47.

DOI: 10.1016/j.fuproc.2003.12.009

Google Scholar

[11] S.K. Dey, B. Jana, A. Basumallick, Kinetics and Reduction Characteristics of Hematite-Non Cooking Coal Mixed Pellets under Nitrogen Gas Atmosphere, ISIJ Int. 33(1993) 735-739.

DOI: 10.2355/isijinternational.33.735

Google Scholar

[12] Q. Wang, Z. Yang, J. Tian, W. Li, J Sun, Mechanism of Reduction in Iron Ore – Coal Composite Pellets, Ironmak Steelmak. 24(1997) 457-60.

Google Scholar

[13] T. Yamashita, T. Nakada, K. Nagata, In-situ Observation of Fe0. 94O Reduction at High Temperature with the Use of Optical Microscopy, Met Mater Trans B. 38B(2007) 185-191.

DOI: 10.1007/s11663-007-9039-0

Google Scholar

[14] US Patern No. 6257879 B1, (2001).

Google Scholar

[15] S. Halder and R.J. Fruehan, Reduction of Iron Oxide Carbon Composite – Rates of Reduction of Composite Pellets in a Rotary Hearth Furnace Simulator, Metallurgical and Materials Transactions B 39-6(2008): 796-808.

DOI: 10.1007/s11663-008-9203-1

Google Scholar

[16] G. Liu, V. Strezov, JA Lucas, and LJ Wibberley, Thermal Investigations of Direct Iron Ore Reduction with Coal, Thermochimica Acta 410 (2004), 133-140.

DOI: 10.1016/s0040-6031(03)00398-8

Google Scholar

[17] US Patern No. 3765873 A, (1970).

Google Scholar