Synthesis of h-MoO3 and (NH4)2Mo4O13 Using Precipitation Method at Various pH Values and their Photochromic Properties

Article Preview

Abstract:

(NH4)2Mo4O13 and h–MoO3 nanocrystalline powders were synthesized by precipitation method at a varied pH range from 5.0 to 1.0. The crystal structure, morphology and optical property of samples were determined by X–ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectrophotometer (UV-vis DRS). At pH 2.0, 3.0 and 5.0, homogenous plate–like (NH4)2Mo4O13 was seen, whereas the heterogeneous hexagonal rod–shaped MoO3 was found at very low pH of 1.0 and 1.5. Band gap energy of the synthesized (NH4)2Mo4O13 and h–MoO3 were 3.38 and 3.18 eV, respectively. Photochromic properties of the products were illustrated by color difference before and after UV irradiation using CIE Lab color system. The synthesized h–MoO3 provided a strong photochromic performance, while the (NH4)2Mo4O13 showed non–photochromic properties. Intercalation of H+ in h-MoO3 were studied using electrochemical characterization by cyclic voltammetry (CV). The diffusion coefficient of the samples increases with decreasing pH of the solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-41

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] T. He, J. Yao, Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates, Prog. Mater. Sci. 51 (2006) 810-879.

DOI: 10.1016/j.pmatsci.2005.12.001

Google Scholar

[2] S.M. Partington, A.D. Towns, Photochromism in spiroindolinonaphthoxazine dyes: Effects of alkyl and ester substituents on photochromic properties, Dyes Pigments. 104 (2014) 123-130.

DOI: 10.1016/j.dyepig.2014.01.005

Google Scholar

[3] T.J. Dejournett, J.B. Spicer, The influence of oxygen on the microstructure, optical and photochromic properties of polymer-matrix, tungsten-oxide nanocomposite films, Sol. Energ. Mat. Sol. C. 120 (2014) 102-108.

DOI: 10.1016/j.solmat.2013.08.023

Google Scholar

[4] S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, I.S. Patil, Concentration dependent structural, optical and electrochromic properties of MoO3 thin films, Int. J. Electrochem. Sci. 3 (2008) 953-960.

DOI: 10.1016/s1452-3981(23)15494-0

Google Scholar

[5] K.H. Krishna, O. M. Hussain, C. Guillen, Photo- and electrochromic properties of activated reactive evaporated MoO3 thin films grown on flexible substrates, Res. Lett. Nanotechnol. 2008 (2008) 1-5.

DOI: 10.1155/2008/217510

Google Scholar

[6] S. Songara, M.K. Patra, M. Manoth, L. Saini, V. Gupta, G.S. Gowd, S.R. Vadera, N. Kumar, Synthesis and studies on photochromic properties of vanadium doped TiO2 nanoparticles, J. Photoch. Photobio. A: Chem. 209 (2010) 68-73.

DOI: 10.1016/j.jphotochem.2009.11.001

Google Scholar

[7] S. Galioglu, M. Isler, Z. Demircioglu, M. Koc, F. Vocanson, N. Destouches, R. Turan, B. Akata, Photochromic behavior of silver nanoparticle incorporated titanosilicate ETS-10 films, Micropor. Mesopor. Mat. 196 (2014) 136-144.

DOI: 10.1016/j.micromeso.2014.05.009

Google Scholar

[8] T. Antropova, M. Girsova, I. Anfimova, I. Drozdova, I. Polyakova, N. Vedishcheva, Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides, J. Non-Cryst. Solids. 401 (2014) 139-141.

DOI: 10.1016/j.jnoncrysol.2014.01.033

Google Scholar

[9] L. Zheng, Y. Xu, D. Jin, Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater. 21 (2009) 5681-5690.

DOI: 10.1021/cm9023887

Google Scholar

[10] Y. Shen, R. Huang, Y. Cao, P. Wang, Synthesis and photochromic properties of formaldehyde-induced MoO3 powder, Mater. Sci. Eng. B. 172 (2010) 237-241.

DOI: 10.1016/j.mseb.2010.05.023

Google Scholar

[11] G.G. Allogho, P.V. Ashrit, Wettability and photochromic behavior of Molybdenum oxide thin films, Thin Solid Films, 520 (2012) 2326-2330.

DOI: 10.1016/j.tsf.2011.09.068

Google Scholar

[12] K.S. Rao, K.V. Madhuri, S. Uthanna, O.M. Hussain, C. Julien, Photochromic properties of double layer CdS/MoO3 nano-structured films, Mater. Sci. Eng. B. 100 (2003) 79-86.

DOI: 10.1016/s0921-5107(03)00078-3

Google Scholar

[13] Y. Zhang, J. Yuan, Y. Cao, L. Song, X. Hu, Photochromic behavior of Li-stabilized MoO3 sol–gel, J. Non-Cryst. Solids. 354 (2008) 1276-1280.

DOI: 10.1016/j.jnoncrysol.2006.11.035

Google Scholar

[14] A.K. Prasad, D.J. Kubinski, P.I. Gouma, Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection, Sensor. Actuat. B, 93 (2003) 25-30.

DOI: 10.1016/s0925-4005(03)00336-8

Google Scholar

[15] C. Jiu-ju, Y. Hai-bin, C. Lian-xia, F. Wu-you, Z. Yi, Z. Hong-yang,Z. Guang-tian, Sonochemical preparation and characterization of photochromic MoO3 nanoparticles, Front. Phys. China., 2 (2007) 92-95.

Google Scholar

[16] B. Kannan, R. Pandeeswari, B.G. Jeyaprakash, Influence of precursor solution volume on the properties of spray deposited α-MoO3 thin films, Ceram. Int. 40 (2014) 5817–5823.

DOI: 10.1016/j.ceramint.2013.11.022

Google Scholar

[17] S. Li, M.S. El-Shall, Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles, Nanostruct. Mater. 12 (1999) 215–219.

DOI: 10.1016/s0965-9773(99)00102-6

Google Scholar

[18] J. Song, X. Ni, L. Gao, H. Zheng, Synthesis of metastable h-MoO3 by simple chemical precipitation, Mater. Chem. Phys. 102 (2007) 245–248.

DOI: 10.1016/j.matchemphys.2006.12.011

Google Scholar

[19] L.V. Azaroff, Elements of X-ray crystallography, first ed McGraw-Hill, New York St. Louis, (1968).

Google Scholar

[20] R. Irmawarti, M. Shafizah, The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids, Int. J. Basic. Appl. Sci. 9 (2009) 34-36.

Google Scholar

[21] A. Chithambararaj, A.C. Bose, Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure, Beilstein. J. Nanotechnol. 2 (2011) 585-592.

DOI: 10.3762/bjnano.2.62

Google Scholar

[22] Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties, Cryst. Eng. Comm. 12 (2010) 3740-3747.

DOI: 10.1039/c000744g

Google Scholar

[23] P. Jittiaporn, S. Suwanboon, P. Amornpitoksuk, O. Patarapaiboolchai, Defects and the optical band gap of ZnO nanoparticles prepared by a grinding method, J. Ceram. Proc. Res. 12 (2011) 85-89.

Google Scholar

[24] P. Jittiarporn, L. Sikong, K. Kooptarnond, W. Taweepreda, Effects of precipitation temperature on the photochromic properties of h-MoO3, Ceram. Inter. 40 (2014) 13487–13495.

DOI: 10.1016/j.ceramint.2014.05.076

Google Scholar

[25] S. Sallard, T. Brezesinski, B.M. Smarsly, Electrochromic stability of WO3 thin films with naometer-scale periodicity and varying degrees of crystallinity, J. Phys. Chem. C. 111 (2007) 7200-7206.

DOI: 10.1021/jp068499s

Google Scholar