Influence of Different Anvil Back Plates on Heat Dissipation Velocity of the Micro-Friction Stir Welding Process

Article Preview

Abstract:

The objective of this study is to investigate effects of different anvil back plates on heat dissipation velocity of the micro-friction stir welding (micro-FSW or) process. For this purpose, temperature field simulations are conducted for the micro-friction stir welding of AA5083-H323 aluminum alloy thin sheets by using the ceramic anvil back plate and conventional steel anvil back plate, respectively. Comparing the obtained two temperature fields, it is found that the ceramic anvil back plate significantly decreases the heat dissipation velocity of the micro-FSW process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-420

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] W.M. Thomas, E.D. Nicholas, J.C. Need ham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction stir butt welding. International patent application no. PCT/GB92/02203 and GB patent application no. 9125978. 8, 6 December (1991).

Google Scholar

[2] Guo, Zheng Hua, et al, Finite Element Analysis of Materials Flow Behavior in Friction Stir Welding of 7075 Aluminum Alloy Plate. Applied Mechanics and Materials 117 (2012): 1621-1624.

DOI: 10.4028/www.scientific.net/amm.117-119.1621

Google Scholar

[3] Cao, Feng Hong, Heat Modeling for Friction Stir Welding. Applied Mechanics and Materials 467 (2014): 385-391.

DOI: 10.4028/www.scientific.net/amm.467.385

Google Scholar

[4] Yokoyama, Takashi, and K. Nakai, High Strain-Rate Compressive Response of Friction Stir Welded AA7075-T651 Joints. Applied Mechanics and Materials 7 (2007): 251-256.

DOI: 10.4028/www.scientific.net/amm.7-8.251

Google Scholar

[5] Information on http: /www. twi-global. com/technical-knowledge/published-papers/developments-in-micro-applications-of-friction-stir-welding.

Google Scholar

[6] Prasanna, P., B. Subba Rao, and G. Krishna Mohana Rao, Finite element modeling for maximum temperature in friction stir welding and its validation. The International Journal of Advanced Manufacturing Technology 51. 9-12 (2010): 925-933.

DOI: 10.1007/s00170-010-2693-4

Google Scholar

[7] Zhu, X. K., and Y. J. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of materials processing technology 146. 2 (2004): 263-272.

DOI: 10.1016/j.jmatprotec.2003.10.025

Google Scholar

[8] Chao, Yuh J., X. Qi, and W. Tang, Heat transfer in friction stir welding—experimental and numerical studies. Journal of manufacturing science and engineering 125. 1 (2003): 138-145.

DOI: 10.1115/1.1537741

Google Scholar

[9] Hamilton, Robert, Donald MacKenzie, and Hongjun Li, Multi-physics simulation of friction stir welding process. Engineering Computations 27. 8 (2010): 967-985.

DOI: 10.1108/02644401011082980

Google Scholar

[10] Schmidt, Hattel, and Jesper Hattel, A local model for the thermomechanical conditions in friction stir welding. Modelling and Simulation in Materials Science and Engineering 13. 1 (2005): 77.

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[11] Padmanaban, R., V. Ratna Kishore, and V. Balusamy, Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding of Dissimilar Aluminum Alloys. Procedia Engineering 97 (2014): 854-863.

DOI: 10.1016/j.proeng.2014.12.360

Google Scholar

[12] Information on http: /en. wikipedia. org/wiki/Thermal_conductivity.

Google Scholar

[13] Hamilton, C., S. Dymek, and A. Sommers, A thermal model of friction stir welding in aluminum alloys. International journal of machine tools and manufacture 48. 10 (2008): 1120-1130.

DOI: 10.1016/j.ijmachtools.2008.02.001

Google Scholar

[14] Schmidt, H., Jesper Hattel, and John Wert, An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering 12. 1 (2004): 143.

DOI: 10.1088/0965-0393/12/1/013

Google Scholar

[15] Chen, C. M., and R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermomechanical analysis. International Journal of Machine Tools and Manufacture 43. 13 (2003): 1319-1326.

DOI: 10.1016/s0890-6955(03)00158-5

Google Scholar

[16] Song, M., and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation. International Journal of Machine Tools and Manufacture 43. 6 (2003): 605-615.

DOI: 10.1016/s0890-6955(03)00022-1

Google Scholar

[17] P. Colegrove, Three dimensional flow and thermal modeling of the friction stir welding process, Proceedings of the second International Symposium on Friction Stir Welding, Sweden, August (2000).

DOI: 10.1201/9781315116815-2

Google Scholar

[18] Sattari, S., H. Bisadi, and M. Sajed, Mechanical Properties and Temperature Distributions of Thin Friction Stir Welded Sheets of AA5083. International Journal of Mechanics and Applications 2. 1 (2012): 1-6.

DOI: 10.5923/j.mechanics.20120201.01

Google Scholar