Effects of Alkaline Concentrations on the Tensile Properties of Napier Grass Fibre

Article Preview

Abstract:

This paper presents an experimental investigation of the effects of alkaline treatment on the tensile properties of Napier grass fibres. The effect of different concentrations of NaOH aqueous solutions on the morphology and structure of the fibres were studied. The fibres were treated with 5%, 10%, and 15% of Sodium hydroxide (NaOH) concentration for 24 hours of soaking time. The single fibre tests were then performed in accordance with ASTM D3822-07 standard. The morphology of the fibres before and after alkali treatment was observed with a Metallurgical Microscope MT8100. The results show that the physical properties were varied after the treatments and 10% concentration of NaOH treatment yield the maximum tensile strength and elongation of the fibre at 172 MPa and 5.7% respectively. Morphology observation found that the fibre became thinner, and the surface roughness of the fibres increased with the increment of NaOH concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-27

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] P. A. Fowler, J. M. Hughes, and R. M. Elias, Biocomposites: technology, environmental credentials and market forces, J. Sci. Food Agric., vol. 86, no. 12, p.1781–1789, Sep. (2006).

DOI: 10.1002/jsfa.2558

Google Scholar

[2] A. R. Mohanty, B. D. S. Pierre, and P. Suruli-Narayanasami, Structure-borne noise reduction in a truck cab interior using numerical techniques, Appl. Acoust., vol. 59, no. 1, p.1–17, (2000).

DOI: 10.1016/s0003-682x(99)00018-3

Google Scholar

[3] K. O. Reddy, C. U. Maheswari, M. Shukla, and A. V. Rajulu, Chemical composition and structural characterization of Napier grass fi bers, Mater. Lett., vol. 67, no. 1, p.35–38, (2012).

DOI: 10.1016/j.matlet.2011.09.027

Google Scholar

[4] K. O. Reddy, C. U. Maheswari, D. J. P. Reddy, and A. V. Rajulu, Thermal properties of Napier grass fibers, Mater. Lett., vol. 63, no. 27, p.2390–2392, Nov. (2009).

DOI: 10.1016/j.matlet.2009.08.035

Google Scholar

[5] B. F. Yousif, A. Shalwan, C. W. Chin, and K. C. Ming, Flexural properties of treated and untreated kenaf/epoxy composites, Mater. Des., vol. 40, p.378–385, (2012).

DOI: 10.1016/j.matdes.2012.04.017

Google Scholar

[6] M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites, Compos. Interfaces, vol. 15, no. 2–3, p.169–191, Jan. (2008).

DOI: 10.1163/156855408783810920

Google Scholar

[7] K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers, Compos. Part A Appl. Sci. Manuf., vol. 37, no. 12, p.2213–2220, Dec. (2006).

DOI: 10.1016/j.compositesa.2005.12.014

Google Scholar

[8] D. Ray, B. K. Sarkar, A. K. Rana, and N. R. Bose, Mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres, Compos. Part A Appl. Sci. Manuf., vol. 32, p.119–127, (2001).

DOI: 10.1016/s1359-835x(00)00101-9

Google Scholar

[9] Y. Lazim, S. M. Salit, E. S. Zainudin, M. Mustapha, and M. Jawaid, Effect of Alkali Treatment on the Physical, Mechanical, and Morphological Properties of Waste Betel Nut ( Areca catechu ) Husk Fibre, vol. 9, p.7721–7736, (2014).

DOI: 10.15376/biores.9.4.7721-7736

Google Scholar

[10] M. J. A. Haameem, M. S. Abdul Majid, E. a. H. E. Ubaidillah, M. Afendi, R. Daud, and N. A. M. Amin, Tensile Strength of Untreated Napier Grass Fibre Reinforced Unsaturated Polyester Composites, Appl. Mech. Mater., vol. 554, p.189–193, Jun. (2014).

DOI: 10.4028/www.scientific.net/amm.554.189

Google Scholar

[11] R. Mahjoub, J. M. Yatim, A. R. Mohd Sam, and S. H. Hashemi, Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications, Constr. Build. Mater., vol. 55, p.103–113, (2014).

DOI: 10.1016/j.conbuildmat.2014.01.036

Google Scholar

[12] S. T. Method, Standard Test Method for Tensile Properties of Single Textile Fibers 1, p.1–10, (2013).

Google Scholar

[13] M. S. Meon, M. F. Othman, H. Husain, M. F. Remeli, and M. S. M. Syawal, Improving Tensile Properties of Kenaf Fibers Treated with Sodium Hydroxide, Procedia Eng., vol. 41, no. Iris, p.1587–1592, Jan. (2012).

DOI: 10.1016/j.proeng.2012.07.354

Google Scholar