Structural Modification Strategies to Improve Piezoelectric Energy Harvester Performance

Article Preview

Abstract:

Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. This paper presents work on improving piezoelectric energy harvesters based on the structural modifications. Four different strategies of structural modification are employed for optimization by using additional beam structure as well as incorporation of rubber layer. This work summarized the optimum performance of the strategies at a resonance frequency of 60 + 2 Hz at 0.25g. The parameters compared among the strategies are voltage, power, PZT power density, spatial power density and specific power density. The results are also compared with other similar work. In general, structure with an addition of silicon rubber beam was found to give the best power density output and produce 253% increase of power ouput as compared to basic PZT energy harvester.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

934-940

Citation:

Online since:

April 2015

Export:

Price:

* - Corresponding Author

[1] Shad Roundy, Paul Kenneth, Jan M. Rabaey and UC Berkeley, "Energy Scavenging for Wirless Sensor Networks with Special Focus on Vibrations, Kluwer Academic Publishers, (2004).

DOI: 10.1007/978-1-4615-0485-6

Google Scholar

[2] P. Muralt, M. Marzencki, B. Belgacem, F. Calame and S. Basrour, Vibration Energy Harvesting with PZT Micro Device, Procedia Chemistry. 1 (1) (2009) 1191-1194.

DOI: 10.1016/j.proche.2009.07.297

Google Scholar

[3] K. Morimoto, I. Kanno, Kiyotaka Wasa and Hidetoshi Kotera, High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers, Sensors and Actuators A: Physi. 163 (1) (2010) 428-432.

DOI: 10.1016/j.sna.2010.06.028

Google Scholar

[4] H. Durou, G. A. Ardila-Rodriguez, A. Ramond, X. Dollat, C. Rossi, D. Esteve, Micromachined Bulk PZT Piezoelectric Vibration Harvester To Improve Effectiveness Over Low Amplitude And Low Frequency Vibrations, Proceedings Power MEMS (2010), 27-30.

Google Scholar

[5] R. Xu, A. Lei, C. D. Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. V. Thomsen, MEMS-Based PZT/PZT Bimorph Thick Film Vibration Energy Harvester , Proceedings Power MEMS (2011) 143-146.

DOI: 10.1109/transducers.2011.5969848

Google Scholar

[6] A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K Hansen, R. Lou-Moller, E. V. Thomsen, K. Birkelund, MEMS-based thick film PZT vibrational energy harvester, Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on 125(128) (2011).

DOI: 10.1109/memsys.2011.5734377

Google Scholar

[7] J. C. Park, J. Y. Park and Y. P. Lee, Modeling and Characterization of Piezoelectric d_{33} -Mode MEMS Energy Harvester, Microelectromechanical Systems, J. 19(5) (2010) 1215-1222.

DOI: 10.1109/jmems.2010.2067431

Google Scholar

[8] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai and Y. Liu, Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting, Microelectronics J. 37(11) (2006) 1280-1284.

DOI: 10.1016/j.mejo.2006.07.023

Google Scholar

[9] E. E. Aktakka, R. L. Peterson and K Najafi, Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International 1649(1652) (2011).

DOI: 10.1109/transducers.2011.5969857

Google Scholar

[10] W. S. Hussein and H. Salleh Configuration Consideration in Improving the Power Output of the PZT Energy Harvester, 2010 ASME International Mechanical Engineering Congress, Vancouver, British Columbia, Canada November (2010) 12-18.

DOI: 10.1115/imece2010-38527

Google Scholar

[11] P.C. Huang, T. H. Tsai and Y. J. Yang, Wide-bandwidth piezoelectric energy harvester integrated with parylene-C beam structures, Microelectronic Engineering (2013).

DOI: 10.1016/j.mee.2013.03.158

Google Scholar

[12] Z. Wang, R. Elfrink, R. J. M. Vullers, V. van Acht, M. Tutelaers, S. Matova, J. Oudenhoven, and R. van Schaijk, Large Power Amplification of a Piezoelectric Energy Harvester Excited by Random Vibrations, Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference (2013).

DOI: 10.1109/memsys.2013.6474188

Google Scholar

[13] M. D. Salim, H. Salleh, D. S. M. Salim, Simulation and experimental investigation of a wide band PZ MEMS harvester at low frequencies, Microsystem Technologies (2012).

DOI: 10.1007/s00542-012-1453-9

Google Scholar

[14] M. Dhia Salim, H. Salleh, D. Shaker Salim, A low frequency tunable hybrid generator, Microsystem Technologies, Microsystem technologies 19 (11) (2013).

DOI: 10.1007/s00542-013-1739-6

Google Scholar

[16] A. Shebeeb and H. Salleh Effect of cantilever shape on the power output of piezoelectric energy harvester, , 2010 IEEE International Conference on Semiconductor Electronics (ICSE2010) (2010).

DOI: 10.1109/smelec.2010.5549360

Google Scholar