Effect of Concentration and Time Factors on Carbon Nanofiber Supported Iron Catalyst Preparation by Incipient Wetness

Article Preview

Abstract:

This paper discusses the influence of residence time and iron concentration factors on the impregnation yield for preparation of the carbon nanofiber supported iron material by incipient wetness impregnation. The samples were characterized by nitrogen physisorption, thermogravimetric analysis and electron spectroscopy techniques. The technique of effective impregnation was studied by atomic adsorption spectrophotometry. The results show that the morphology of the iron was distributed and well supported and the size of iron was in a wide range of 1μm to less than 2nm. The impregnation yield has been achieved 78% for 3 hours of residence time of 3%wt Fe/CNF sample with surface area of 102.292 m2/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

November 2014

Export:

Price:

[1] M. Campanati, G. Fornasari, A. Vaccari, Fundamentals in the preparation of heterogeneous catalysts, Catalysis Today, 77 (2003) 299-314.

DOI: 10.1016/s0920-5861(02)00375-9

Google Scholar

[2] R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of Catalysis, 26 (1972) 51-62.

DOI: 10.1016/0021-9517(72)90032-2

Google Scholar

[3] R.T.K. Baker, J.J. Chludzinski Jr, N.S. Dudash, A.J. Simoens, The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum, Carbon, 21 (1983) 463-468.

DOI: 10.1016/0008-6223(83)90138-0

Google Scholar

[4] S. Sufian, Irregular Configurations of Carbon Nanofibers, in: Carbon and Oxide Nanostructures, Springer Berlin Heidelberg, 2011, pp.125-141.

Google Scholar

[5] C. Park, R.T.K. Baker, Carbon Deposition on Iron–Nickel During Interaction with Ethylene–Carbon Monoxide–Hydrogen Mixtures, Journal of Catalysis, 190 (2000) 104-117.

DOI: 10.1006/jcat.1999.2735

Google Scholar

[6] O.F.K. Schlüter, B.I. Wehner, D. Hu, W. Xia, T. Quandt, G. Marginean, W. Brandl, M. Muhler, The iron-catalyzed synthesis of carbon microfibers from methane: the influence of growth conditions on conversion, selectivity, morphology and structure of the fibers, Applied Catalysis A: General, 274 (2004).

DOI: 10.1016/j.apcata.2004.05.023

Google Scholar

[7] L.B. Avdeeva, T.V. Reshetenko, Z.R. Ismagilov, V.A. Likholobov, Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon, Applied Catalysis A: General, 228 (2002) 53-63.

DOI: 10.1016/s0926-860x(01)00959-0

Google Scholar

[8] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A: General, 253 (2003) 337-358.

DOI: 10.1016/s0926-860x(03)00549-0

Google Scholar

[9] N. Yahya, Carbon and oxide nanostructures: synthesis, characterization and applications, springer, German, (2010).

Google Scholar

[10] G. Berrebi, P. Bernusset, B. Delmon, P. Jacobs, G. Poncelet, Preparation of Catalysts, Delmon, Jacobs and Poncelet Ed, (1976).

Google Scholar

[11] M.L. Toebes, J.A. van Dillen, K.P. de Jong, Synthesis of supported palladium catalysts, Journal of Molecular Catalysis A: Chemical, 173 (2001) 75-98.

DOI: 10.1016/s1381-1169(01)00146-7

Google Scholar

[12] G. J. W, Preparation and properties of iron oxide and metallic iron catalysts, Applied Catalysis, 25 (1986) 313-333.

DOI: 10.1016/s0166-9834(00)81249-x

Google Scholar

[13] M.K. van der Lee, J. van Dillen, J.H. Bitter, K.P. de Jong, Deposition Precipitation for the Preparation of Carbon Nanofiber Supported Nickel Catalysts, J. Am. Chem. Soc., 127 (2005) 13573-13582.

DOI: 10.1021/ja053038q

Google Scholar

[14] K.P. de Jong, Synthesis of supported catalysts, Current Opinion in Solid State and Materials Science, 4 (1999) 55-62.

DOI: 10.1016/s1359-0286(99)80012-6

Google Scholar

[15] N. Riaz, F.K. Chong, B.K. Dutta, S. Khan, E. Nurlaela, Photocatalytic Degradation of Orange II using Bimetallic Cu-Ni/TiO2 Photocatalysts, (2010).

Google Scholar

[16] J.H. Bitter, M.K. van der Lee, A.G.T. Slotboom, A.J. van Dillen, K. p. de Jong, Synthesis of Highly Loaded Highly Dispersed Nickel on Carbon Nanofibers by Homogeneous Deposition–Precipitation, Catalysis Letters, 89 (2003) 139-142.

DOI: 10.1023/a:1024744131630

Google Scholar

[17] E. van Steen, F.F. Prinsloo, Comparison of preparation methods for carbon nanotubes supported iron Fischer–Tropsch catalysts, Catalysis Today, 71 (2002) 327-334.

DOI: 10.1016/s0920-5861(01)00459-x

Google Scholar

[18] C. Park, R.T.K. Baker, Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 2. The Influence of the Nanofiber Structure, J. Phys. Chem. B, 102 (1998) 5168-5177.

DOI: 10.1021/jp981210p

Google Scholar

[19] A. Chambers, T. Nemes, N.M. Rodriguez, R.T.K. Baker, Catalytic Behavior of Graphite Nanofiber Supported Nickel Particles. 1. Comparison with Other Support Media, J. Phys. Chem. B, 102 (1998) 2251-2258.

DOI: 10.1021/jp973462g

Google Scholar

[20] K. Wieczorek-Ciurowa, A.J. Kozak, The Thermal Decomposition of Fe(NO3)3·9H2O, Journal of Thermal Analysis and Calorimetry, 58 (1999) 647-651.

DOI: 10.1023/a:1010112814013

Google Scholar

[21] N.M. Rodriguez, A. Chambers, R.T.K. Baker, Catalytic Engineering of Carbon Nanostructures, Langmuir, 11 (1995) 3862-3866.

DOI: 10.1021/la00010a042

Google Scholar

[22] J.A. Zazo, J.A. Casas, A.F. Mohedano, J.J. Rodríguez, Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst, Applied Catalysis B: Environmental, 65 (2006) 261-268.

DOI: 10.1016/j.apcatb.2006.02.008

Google Scholar

[23] O. Levenspiel, Chemical reaction engineering, second ed., John Wiley & Sons, Inc., (1972).

Google Scholar

[24] F.F. Prinsloo, D. Hauman, R. Slabbert, Loading of iron on carbon nanotubes and nanofibers, The American Physical Society, (2001) 1-8.

Google Scholar

[25] X. Duan, G. Qian, X. Zhou, Z. Sui, D. Chen, W. Yuan, Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition, Applied Catalysis B: Environmental, 101 (2011) 189-196.

DOI: 10.1016/j.apcatb.2010.09.017

Google Scholar