Review of Photovoltaic/Thermal System Design and Heat Transfer Enhancement Methods

Article Preview

Abstract:

Solar energy is a viable renewable energy source, and photovoltaic technology has mature significantly in recent years. To maintain the operating efficiency of photovoltaic system, heat must be remove from its surface, thus lead to development of photovoltaic/thermal system. This paper identify several key design criteria as well as heat transfer enhancement methods that is currently existed, and some future work is proposed to optimize the system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

753-756

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] P Sukhatme, J. N, Solar Energy Principles of Thermal Collection and Storage, New Delhi, McGraw Hill, (2009).

Google Scholar

[2] K. Sopian, K. S. Y., H.T. Liu, S. Kakac, T. N Veziiroglu. (1995). Performance Analysis Of Photovoltaic Thermal Air Heater, Energy Conversion, 37(11) (1995) 1657-1670.

DOI: 10.1016/0196-8904(96)00010-6

Google Scholar

[3] H.P. Garg, R. S. A., Conventional Hybrid Photovoltaic/ Thermal (PV/T) Air Heating Collector: Steady State Simulation, Renewable Energy 3 (1997) 363-385.

DOI: 10.1016/s0960-1481(97)00007-4

Google Scholar

[4] Hegazy, A. A., Comparative Study of the performances of four photovoltaic/ thermal solar air collectors, Energy Conversion and Management 41 (2000) 861-881.

DOI: 10.1016/s0196-8904(99)00136-3

Google Scholar

[5] Mohd Yusof Othman, B. Y., Kamaruzzaman Sopian, Mohd. Nazari Abu Bakar, Performance studies on a finned double pass photovoltaic-thermal (PV/T) solar collector, paper presented at The Ninth Arab International Conference on Solar Energy (AICSE) (2007).

DOI: 10.1016/j.desal.2007.04.007

Google Scholar

[6] Yixian Lee, A. A. O. T., Finite element thermal analysis of a solar photovoltaic module, paper presented at the International Conference on Materials for Advanced Technologies (2011).

Google Scholar

[7] Cecili Rossi, L. A. T., Federico Scarpa, Vincenzo Bianco, Experimental and numerical results from hybrid retrofitted photovoltaic panels, Energy Conversion and Management 76 (2013) 634-644.

DOI: 10.1016/j.enconman.2013.07.088

Google Scholar

[8] H. A Zondag, D. W. V., W.G.J. Van Helden, R.J.C. Van Zolingen, A.A. Van Steenhoven, The thermal and electrical yield of a pv-thermal collector. Solar Energy 72 (2001) 113-128.

DOI: 10.1016/s0038-092x(01)00094-9

Google Scholar

[9] Rattanasuda Naewngerndee, E.H., Kamonpan, Chumpolrat, Tongpool Sangkapes, Jiraphong Phongsitong, Sirimongkhol Jaikla, Finite element method for computational fluid dynamics to design photovoltaic thermal (PV/T) system configuration, Solar Energy Materials & Solar Cells 95 (2011).

DOI: 10.1016/j.solmat.2010.02.013

Google Scholar

[10] Yunus A. Cengel, A. J. G., Heat and Mass Transfer (SI Unit), fourth ed., McGraw-Hill, London, (2011).

Google Scholar

[11] Naphon, P., Effect of porous media on the performance of the double-pass flat plate solar air heater, International Communications in Heat and Mass Transfer 32(1-2) (2005) 140-150.

DOI: 10.1016/j.icheatmasstransfer.2004.11.001

Google Scholar

[12] Prashant Dhiman, N. S. T., Anoop Kumar, Satyender Singh. (2011). An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater, Applied Energy 88 (2011) 2157-2167.

DOI: 10.1016/j.apenergy.2010.12.033

Google Scholar

[13] Evans, D.L., Simplified method for predicting photovoltaic array output, Solar Energy 7 (1981) 555-556.

DOI: 10.1016/0038-092x(81)90051-7

Google Scholar