Facile Electrospinning Preparation of Y3Al5O12 Nanobelts

Article Preview

Abstract:

PVP/[Y(NO3)3+Al (NO3)3] composite nanobelts were fabricated via electrospinning combined with sol-gel process and novel structure of Y3Al5O12 (denoted as YAG for short) nanobelts have been obtained after calcination of the relevant composite nanobelts. The structural properties were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XRD analysis indicated that the composite nanobelts were amorphous, and YAG nanobelts were cubic in structure with space group Ia3d. FTIR analysis manifested that pure YAG nanobelts were formed at 900oC. SEM analysis and histograms revealed that the width of the composite nanobelts and YAG nanobelts were 3.5 μm and 2.4 μm, and the thickness were 240 nm and 112 nm, respectively, under the 95% confidence level. The formation mechanism of YAG nanobelts was discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3041-3045

Citation:

Online since:

October 2013

Export:

Price:

* - Corresponding Author

[1] R. Yousefi and B. Kamaluddin: Appl. Surf. Sci. Vol. 255 (2009), p.9376.

Google Scholar

[2] W. Chen, H. B. Fu and J. N. Yao: Chem. J. of Chinese U. Vol. 31 (2010), p.583 (In Chinese).

Google Scholar

[3] Q. Zou, Z. S. Zhang, H. Y. Li, M. Hu, Y. X. Qin and Z. G. Liu: Chem. J. of Chinese U. Vol. 27 (2006), p.1211 (In Chinese).

Google Scholar

[4] C. Song and X. T. Dong: Optoelectron. Adv. Mat. Vol. 5 (2011), p.1296.

Google Scholar

[5] G. Z. Shen and D. Chen: J. Mater. Chem. Vol. 20 (2010), p.10888.

Google Scholar

[6] H. S. Chen, J. J. Qi, Y. H. Huang, Q. L. Liao and Y. Zhang: Acta Phys-Chim. Sin. Vol. 23 (2007), p.55.

Google Scholar

[7] X. B. Zhao, F. Pan, H. Xu, M. Yaseen, H. H. Shan, C. A. E. Hauser, S. G. Zhang and J. R. Lu: Chem. Soc. Rev. Vol. 39 (2010), p.3480.

Google Scholar

[8] Y. Chen, C. Somsen, S. Milenkovic and A. W. Hassel: J. Mater. Chem. Vol. 19 (2009), p.924.

Google Scholar

[9] L. L. Wu, Y. Liang, F. W. Liu, H. Q. Lu, H. Y. Xu, X. T. Zhang and S. Hark: Cryst. Eng. Comm. Vol. 12 (2010), p.4152.

Google Scholar

[10] D. Yan, P. X. Yan, G. H. Yue, J. Z. Liu, J. B. Chang, Q. Yang, D. M. Qu, Z. R. Geng, J. T. Chen, G. A. Zhang and R. F. Zhuo: Chem. Phys. Lett. Vol. 440 (2007), p.134.

Google Scholar

[11] Y. Liu, J. X. Wang, X. T. Dong and G. X. Liu: Chem. J. of Chinese U. Vol. 31 (2010), p.1291 (In Chinese).

Google Scholar

[12] J. X. Wang, X. T. Dong, Q. Z. Cui, G. X. Liu and W. S. Yu: Journal of Nanoscience and Nanotechnology Vol. 11 (2011), p.2514.

Google Scholar

[13] Y. Hou, X. T. Dong, J. X. Wang, G. X. Liu and L. H. Li: Chem. J. of Chinese U. Vol. 32 (2011), p.225 (In Chinese).

Google Scholar

[14] J. Zhou, W. X. Zhang, L. Wang, Y. Q. Shen, J. Li, W. B. Liu, B. X. Jiang, H. M. Kou, Y. Shi and Y. B. Pan: Ceram. Int. Vol. 37 (2011), p.119.

Google Scholar

[15] W. B. Liu, B. X. Jiang, W. X. Zhang, J. Li, J. Zhou, D. Zhang, Y. B. Pan and J. K. Guo, Ceram. Int. Vol. 36 (2010), p.2197.

Google Scholar

[16] M. Vorsthove and U. Kynast: Mater. Res. Bull. Vol. 46 (2011), p.1761.

Google Scholar

[17] X. Wang, D. Xu, M. Lu, D. Yuan, G. Zhang, S. Xu, S. Guo, X. Jiang, J. Liu, C. Song, Q. Ren, J. Huang and Y. Tian: Mater. Res. Bull. Vol. 38 (2003), p.1257.

Google Scholar

[18] X. Li, Q. Li, J. Y. Wang and S. L. Yang: Mater. Sci. Eng. B Vol. 131 (2006), p.32.

Google Scholar

[19] R. Malekfar and S. Arabgari: Curr. Appl. Phys. Vol. 11 (2011), p.1077.

Google Scholar

[20] Y. K. Li, S. M. Zhou, H. Lin, X. R. Hou and W. J. Li: Ceram. Int. Vol. 32 (2010), p.1223.

Google Scholar

[21] S. Murai, K. Fujita, K. Iwata and K. Tanaka: J. Phys. Chem. C Vol. 115 (2011), p.17676.

Google Scholar

[22] H. Jiao, Q. Ma, L. L. He, Z. Liu and Q. L. Wu: Powder Technol. Vol. 198 (2010), p.229.

Google Scholar