Influence of Inner Steel Tube Properties on Compressive Behavior of FRP-HSC-Steel Double-Skin Tubular Columns

Article Preview

Abstract:

This paper reports on part of an ongoing experimental program at The University of Adelaide on FRP-concrete-steel composite columns. A total of eight high-strength concrete double-skin tubular columns (DSTCs) were tested under axial compression. The column parameters examined included the diameter, thickness, and shape of inner steel tube. The results of the experimental study show that increasing the inner steel tube diameter leads to an increase in the ultimate axial stress and strain of concrete in DSTCs. The results also show that increasing inner steel tube thickness leads to an increase in the ultimate axial stress and strain of DSTCs. Furthermore, it is observed that concrete inside DSTCs with square inner steel tubes is not confined as effectively as concrete inside DSTCs with circular inner steel tubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

701-705

Citation:

Online since:

October 2013

Export:

Price:

[1] T. Ozbakkaloglu, J. C. Lim, T. Vincent, FRP-confined concrete in circular sections: Review and assessment of the stress-strain models, Engineering Structures, 49 (2013) 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[2] P. Rochette, P. Labossiere, Axial testing of rectangular column models confined with composites, J. Compos. Constr., ASCE, Vol. 4 3 (2000) 129-136.

DOI: 10.1061/(asce)1090-0268(2000)4:3(129)

Google Scholar

[3] T. Ozbakkaloglu, E. Akin, Behavior of FRP confined normal-and high-strength concrete under cyclic axial compression, Journal of Composites for Construction, ASCE, Vol. 16 4 (2012) 451-463.

DOI: 10.1061/(asce)cc.1943-5614.0000273

Google Scholar

[4] T. Vincent, T. Ozbakkaloglu, Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra-high-strength concrete, Composites Part B, 50 (2013) 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

Google Scholar

[5] T. Ozbakkaloglu, D. J. Oehlers, Concrete-filled Square and Rectangular FRP Tubes under Axial Compression, Journal of Composites for Construction, ASCE, Vol. 12 4 (2008) 469-477.

DOI: 10.1061/(asce)1090-0268(2008)12:4(469)

Google Scholar

[6] T. Ozbakkaloglu, D. J. Oehlers, Manufacture and testing of a novel FRP tube confinement system, Engineering Structures, Vol. 30 9 (2008) 2448-2459.

DOI: 10.1016/j.engstruct.2008.01.014

Google Scholar

[7] T. Ozbakkaloglu, Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes, Journal of Composites for Construction, ASCE, Vol. 17 1 (2013) 151-161.

DOI: 10.1061/(asce)cc.1943-5614.0000321

Google Scholar

[8] T. Ozbakkaloglu, Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters, Engineering Structures, 51 (2013) 188-199.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[9] T. Ozbakkaloglu, Concrete-filled FRP tubes: Manufacture and testing of new forms designed for improved performance, Journal of Composites for Construction, ASCE, Vol. 17 2 (2013) 280-291.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[10] T. Ozbakkaloglu, Behavior of square and rectangular ultra high-strength concrete-filled FRP tubes under axial compression, Composites Part B, 54 (2013) 97-111.

DOI: 10.1016/j.compositesb.2013.05.007

Google Scholar

[11] J. G. Teng, T. Yu, Y. L. Wong, Behavior of hybrid FRP-concrete-steel double-skin tubular columns, in: The 2nd International Conference on FRP Composites in Civil Engineering-CICE, Adelaide, Australia, (2004) 811-818.

DOI: 10.1201/9780203970850.ch91

Google Scholar

[12] T. Ozbakkaloglu, M. Saatcioglu, Seismic behavior of high-strength concrete Columns confined by fiber reinforced polymer tubes, Journal of Composites for Construction, ASCE, Vol. 10 6 (2006) 538-549.

DOI: 10.1061/(asce)1090-0268(2006)10:6(538)

Google Scholar

[13] T. Ozbakkaloglu, M. Saatcioglu, Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork, Journal of Structural Engineering, ASCE, Vol. 133 1 (2007) 44-56.

DOI: 10.1061/(asce)0733-9445(2007)133:1(44)

Google Scholar

[14] M. Saatcioglu, T. Ozbakkaloglu, G. Elnabelsy, Seismic behavior and design of reinforced concrete columns confined with FRP stay-in-place formwork, ACI Special Publication SP-257, (2009) 149-170.

DOI: 10.14359/20245

Google Scholar

[15] Y. Idris, T. Ozbakkaloglu, Seismic behavior of square high-strength concrete-filled FRP tube columns, J. Compos. Constr., ASCE, (2013) 10. 1061/(ASCE)CC. 1943-5614. 0000388.

DOI: 10.1061/(asce)cc.1943-5614.0000388

Google Scholar

[16] T. Yu, J. G. Teng, Hybrid FRP concrete-steel double skin tubular columns with a square outer and a circular inner tube: stub column tests, in: 13th International Symposium on tubular structures, Hongkong, China, (2010) 629-636.

DOI: 10.1201/b10564-87

Google Scholar

[17] T. Ozbakkaloglu, B. A. Louk Fanggi, Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete, submitted to Journal of Composites for Construction, ASCE, (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000401

Google Scholar