Using Third Harmonic for Shape Optimization of Flux Density Distribution in Linear Permanent-Magnet Machine

Article Preview

Abstract:

This paper presents a sinusoidal permanent magnet (PM) shaping technique with third harmonic to improve the electromagnetic thrust force in linear slotless PM machines without sacrificing the thrust force ripple. Slotless PM linear machine possesses relatively low thrust force ripple due to the absence of cogging force, compared with slotted topology. However, thrust force ripple of the machine with rectangular PM shape still exists due to nonsinusoidal airgap flux density distribution produced by PMs. Sinusoidal shaping techniques can be used to reduce the thrust force ripple but the average thrust force is reduced as well. Therefore, a simple PM shaping technique with optimal 3rd harmonic is presented to improve the output thrust force but not to increase the thrust force ripple. The sinusoidal plus 3rd harmonic shaping technique is analytically demonstrated together conventional sinusoidal shaping method and verified with finite element method. The results show that the electromagnetic performance can be significantly improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-365

Citation:

Online since:

September 2013

Export:

Price:

[1] S. Vaez-Zadeh, and A. H. Isfahani, Multiobjective design optimization of air-core linear permanent-magnet synchronous motors for improved thrust and low magnet consumption, IEEE Trans. Magn., vol. 42, no. 3, pp.446-452, Mar. (2006).

DOI: 10.1109/tmag.2005.863084

Google Scholar

[2] H. Isfahani, S. Vaez-Zadeh, and, M. A. Rahman Using modular poles for shape optimization of flux density distribution in permanent-magnet machines, IEEE Trans. Magn., vol. 44, no. 8, pp.2009-2015, Aug. (2008).

DOI: 10.1109/tmag.2008.922781

Google Scholar

[3] N. R. Tavana, and A. Shoulaie, Analysis and design of magnetic pole shape in linear permanent-magnet machine, IEEE Trans. Magn., vol. 46, no. 4, pp.1000-1006, Apr. (2010).

DOI: 10.1109/tmag.2009.2037951

Google Scholar

[4] J. K. Kim, S. C. Hahn, J. P. Hong, D. H. Kang, and D. H. Koo, Static characteristics of linear BLDC motor using equivalent magnetic circuit and finite element method, IEEE Trans. Magn., vol. 40, no. 2, pp.742-745, Mar. (2004).

DOI: 10.1109/tmag.2004.825033

Google Scholar

[5] H. Isfahani, and S. Vaez-Zadeh, Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations, IEEE Trans. Magn., vol. 48, pp.443-449, Aug. (2007).

DOI: 10.1016/j.enconman.2006.06.022

Google Scholar

[6] L. Y. Li, M. N. Ma, B. Q. Kou, and Q. Q, Chen, Analysis and optimization of slotless electromagnetic linear launcher for space use, IEEE Trans. Plasma Science, vol. 39, no. 1, pp.127-132, Jan. (2011).

DOI: 10.1109/tps.2010.2049590

Google Scholar

[7] H. Isfahani, S. Vaez-Zadeh, and, M. A. Rahman Performance improvement of permanent magnet machines by modular poles, IET Electr. Power Appl., vol. 3, no. 4, pp.343-351, (2009).

DOI: 10.1049/iet-epa.2007.0391

Google Scholar

[8] H. Isfahani, Analytical framework of thrust enhancement in permanent-magnet (PM) linear synchronous motors with segmented PM poles, IEEE Trans. Magn., vol. 46, no. 4, pp.1116-1122, Apr. (2010).

DOI: 10.1109/tmag.2009.2036993

Google Scholar

[9] M. Y. Kim, Y. C. Kim, and G. T. Kim, Design of slotless-type PMLSM for high power density using divided PM, IEEE Trans. Magn., vol. 40, no. 3, p.746–749, Mar. (2004).

DOI: 10.1109/tmag.2004.824726

Google Scholar

[10] R. Lateb, N. Takorabet, and F. Meibody-Tabar, Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors, IEEE Trans. Magn, vol. 42, no. 3, p.442–445, Mar. (2006).

DOI: 10.1109/tmag.2005.862756

Google Scholar

[11] S. Chaithongsuk, N. Takorabet, and F. Meibody-Tabar, On the use of pulse width modulation method for the elimination of flux density harmonics in the air-gap of surface PM motors, IEEE Trans. Magn, vol. 45, no. 3, p.1736–1739, Mar. (2009).

DOI: 10.1109/tmag.2009.2012801

Google Scholar

[12] Y. Li, J. Xing, T. Wang, and Y. Lu, Programmable design of magnet shape for permanent magnet synchronous motors with sinusoidal back EMF waveforms, IEEE Trans. Magn., vol. 44, no. 9, p.2163–2167, Sep. (2008).

DOI: 10.1109/tmag.2008.2000750

Google Scholar

[13] Y. Li, J. Zou, and Y. Lu, Optimum design of magnet shape in permanent magnet synchronous motors, IEEE Trans. Magn., vol. 39, no. 6, p.3523–3526, Nov. (2003).

DOI: 10.1109/tmag.2003.819462

Google Scholar

[14] P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao, and R. Liu, Optimization of the magnetic pole shape of a permanent-magnet synchronous motor, IEEE Trans. Magn., vol. 43, no. 6, p.2531–2533, Jun. (2007).

DOI: 10.1109/tmag.2007.893631

Google Scholar

[15] K. J. Meessen, B. L. J. Gysen, J. J. H. Paulides, and E. A. Lomonova, Halbach permanent magnet shape selection for slotless tubular actuators, IEEE Trans. Magn., vol. 44, no. 11, p.4305–4308, Nov. (2008).

DOI: 10.1109/tmag.2008.2001536

Google Scholar

[16] J. S. Choi and J. Yoo, Design of a Halbach magnet array based on optimization techniques, IEEE Trans. Magn., vol. 44, no. 10, p.2361– 2366, Oct. (2008).

DOI: 10.1109/tmag.2008.2001482

Google Scholar

[17] M. Markovic and Y. Perriard, Optimization design of a segmented Halbach permanent-magnet motor using an analytical model, IEEE Trans. Magn., vol. 45, no. 7, p.2955–2960, Jul. (2009).

DOI: 10.1109/tmag.2009.2015571

Google Scholar