Dynamic Stress Intensity Factor Computation by Using Xfem Formulation

Article Preview

Abstract:

In this paper, we present a modeling of planar structures under dynamic loading containing stationary cracks in order to determine the dynamic stress intensity factor (DSIF). This parameter will be evaluated by using the eXtended Finite Element Method (XFEM) coupled with two different techniques, namely the technique of displacement jump and that of interaction integral. A comparison between the two approaches is discussed. Moreover, the effects of crack orientation and damping material on the DSIF variation are tested. The good correlation of the obtained results for the treated examples with the literature ones demonstrates the effectiveness, accuracy and robustness of the computer software developed in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

716-720

Citation:

Online since:

November 2012

Export:

Price:

[1] S.H. Song, G.H. Paulino, Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method, Int. J. Solids Struct. 43 4830–4866. (2006).

DOI: 10.1016/j.ijsolstr.2005.06.102

Google Scholar

[2] F. Chirino, J. Dominguez, Dynamic analysis of cracks using boundary element method, Engrg. Fract. Mech. 34 1051–1061. (1989).

DOI: 10.1016/0013-7944(89)90266-x

Google Scholar

[3] Y.M. Chen, Numerical computation of dynamic stress intensity factors by a Lagrangian finite difference method, Engrg. Fract. Mech. 7. 653–660. (1975).

DOI: 10.1016/0013-7944(75)90021-1

Google Scholar

[4] P.H. Wen, dynamic fracture mechanics: Displacement Discontinuity method, Edited by C.A. Brebbia and J.J. Connor, Chapter 3, Computational Mechanics Publications Southampton UK and Boston USA, (1996).

Google Scholar

[5] Z.J. Yang, A.J. Deeks, H. Hao, Transient dynamic fracture analysis using scaled boundary finite element method: a frequency-domain approach, Engrg. Fract. Mech. 74 669–687. (2007).

DOI: 10.1016/j.engfracmech.2006.06.018

Google Scholar

[6] A. -V. Phan, L.J. Gray, A. Salvadori, Transient analysis of the dynamic stress intensity factors using SGBEM for frequency-domain elastodynamics, Comput. Methods Appl. Mech. Engrg , 199. 3039-3050. (2010).

DOI: 10.1016/j.cma.2010.06.019

Google Scholar

[7] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Engng. 45, 601-620. (1999).

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[8] T. Belytschko, H Chen, Singular enrichment finite element method for elastodynamic crack propagation, International Journal of Computational Methods, 1 (1), 1–15. (2004).

DOI: 10.1142/s0219876204000095

Google Scholar

[9] J. Réthoré, A. Gravouil, A. Combescure, An energy-conserving scheme for dynamic crack growth using the extended finite element method, Int. J. Numer. Meth. Engng. 63, 631–659. (2005).

DOI: 10.1002/nme.1283

Google Scholar

[10] D. Grégoire, Initiation, propagation, arrêt et redémarrage de fissures sous impact, doctorate thesis of INSA, (2008).

Google Scholar

[11] J. Domiguez, F. Gallego, Time domain boundary element method for dynamic stress intensity computations, Int. J. Num. Meth. Engng., 33, 635-647. (1992).

DOI: 10.1002/nme.1620330309

Google Scholar

[12] G.C. Sih, P. Paris, and G. Irwin, On cracks in rectilinearly anisotropic bodies, International Journal of Fracture Mechanics, 1 (3) 189–203. (1965).

DOI: 10.1007/bf00186854

Google Scholar

[13] A.K. Chopra, Dynamics of structures, edited by Pearson Prentice Hall, Third edition, chapter 11 (2007).

Google Scholar