The Recent Development of Study on H13 Hot-Work Die Steel

Article Preview

Abstract:

The recent development of study on H13 hot-work die steel is reported in this paper. Microstructures and mechanical properties and their changes with some factors are briefly introduced. The factors are included in melting, heat treatment, surface treatment, and so on.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

55-59

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] L.L. Wang, J. Li, B. Ning, Y.Y. Li, Effects of magnesium on wear resistance of H13 steel, Materials Transactions. 55(2014)1104-1108.

DOI: 10.2320/matertrans.m2014086

Google Scholar

[2] H. Demir, S. Gündüz, M.A. Erden. Influence of the heat treatment on the microstructure and machinability of AISI H13 hot-work tool steel, The International Journal of Advanced Manufacturing Technology, 95 (2018)2951–2958.

DOI: 10.1007/s00170-017-1426-3

Google Scholar

[3] A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson. High-temperature properties and microstructural stability of hot-work tool steels, Mater. Sci. A,523(2009) 39-46.

DOI: 10.1016/j.msea.2009.06.010

Google Scholar

[4] J.H. Liu G.X. Wang, Y.P. Bao, Y.Yang, W.Yao, X.N. Gui. Inclusion variations of hot working die steel H13 in refining Process, J. Iron Steel Res. Int.,19(2012)1-7.

DOI: 10.1016/s1006-706x(13)60012-6

Google Scholar

[5] Z. Gao, S.Q. Wang, K.Z. Huang, et al. Effect of artificial tribological layer on sliding wear behavior of H13 steel, Journal of Iron and Steel Research, International, 24(2017)943-949.

DOI: 10.1016/s1006-706x(17)30137-1

Google Scholar

[6] Y.Y. Yi, Z.M. Luo T.L. Ngai,S.Ngai L.J. Li, Improving the corrosion resistance of hot-working mold steel against Al alloy melt by coating, Materials Science Forum, 877 (2017) 67-72.

DOI: 10.4028/www.scientific.net/msf.877.67

Google Scholar

[7] S. Li, X.C. Wu, X.X. Li, J.W. Li, X.J. He, Wear characteristics of Mo-W-type hot-work steel at high temperature, Tribol. Lett.,64 (2016) 32(1-12).

DOI: 10.1007/s11249-016-0764-x

Google Scholar

[8] D.J. Kong, B.G. Zhao, Surface-interface microstructures and high-temperature wear performance of HV of Sprayed and Laser-remelted NiCrBSi alloy coating, Surface Review and Letters, 24(2017)1750057-(1-12).

DOI: 10.1142/s0218625x17500573

Google Scholar

[9] S.H. Yeh, L.H. Chiu, T.L. Chuang and C.Y. Wu,Thermal fatigue behavior evaluation of shot-peened JIS SKD61 hot-work mold steel, Materials Transactions, 54(2013)1053-1056.

DOI: 10.2320/matertrans.m2013019

Google Scholar

[10] X. Tong, M.J. Dai, Z.H. Zhang, Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying, Applied Surface Science, 271(2013)373-380.

DOI: 10.1016/j.apsusc.2013.01.209

Google Scholar

[11] Z.H. Zhang, P.G. Lin, H. Zhou, et al, Microstructure, hardness, and thermal fatigue behavior of H21 steel processed by laser surface remelting, Applied Surface Science, 276 (2013) 62-67.

DOI: 10.1016/j.apsusc.2013.03.009

Google Scholar

[12] S. Li, X.C. Wu, S.H. Chen, J.W. Li,Wear resistance of H13 and a new hot-work die steel at high temperature, Journal of Materials Engineering and Performance, 25(2016)2993-3006.

DOI: 10.1007/s11665-016-2124-2

Google Scholar

[13] M.X. Wei, S.Q. Wang, Y.T. Zhao, K.M. Chen, X.H. Cui, Wear behavior and Mechanism of a Cr-Mo-V cast hot-working die steel, Metall. Mater. Trans. A, 42A(2011)1646-1656.

DOI: 10.1007/s11661-010-0546-2

Google Scholar

[14] G.H. Yan, X.M. Huang, Y.Q. Wang, et al, Effects of heat treatment on mechanical properties of H13 steel, Metal Science and Heat Treatment, 52(2010)393-395.

DOI: 10.1007/s11041-010-9288-4

Google Scholar

[15] J.J. Yan,, D.L. Zheng, H.X. Li,et al, Selective laser melting of H13: microstructure and residual stress, J. Mater. Sci., 52 (2017)12476–12485.

DOI: 10.1007/s10853-017-1380-3

Google Scholar

[16] S.Q. Wang, M.X. Wei, F. et al, Transition of elevated-temperature wear mechanisms and the oxidative delamination wear in hot-working die steels, Tribology International, 43(2010)577-584.

DOI: 10.1016/j.triboint.2009.09.006

Google Scholar

[17] Y. Zeng, P.P. Zuo, X.C. Wu, S.W. Xia, Phenomenon on strain-induced precipitation and coarsening of carbides in H13 at 700oC,Materials Research Society, 31(2016)3841-3849.

DOI: 10.1557/jmr.2016.454

Google Scholar

[18] J. Li, J. Li, .L.L. Wang, L.F. Li, Study on carbide in forged and annealed H13 hot work die steel, High Temp. Mater. Proc., 34(2015)593-598.

DOI: 10.1515/htmp-2014-0073

Google Scholar

[19] J. Li, J. Li, C.B. Shi, L.L. Wang, Z. Wu, H. Wang, Effect of trace magnesium on carbide improvement in H13 steel, Canadian Metallurgical Quarterly, 55 (2016)321-327.

DOI: 10.1179/1879139515y.0000000030

Google Scholar

[20] H. Wang, J. Li, C.B. Shi, J. Li, Evolution of Al2O3 inclusions by magnesium treatment in H13 hot work die steel, Ironmaking and Steelmaking, 44(2017)128-133.

DOI: 10.1080/03019233.2016.1165498

Google Scholar

[21] Y.F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu, H. Wang, Effect of directional solidification of electroslag remelting on the microstructure and primary carbides in an austenitic hot-work die steel, Journal of Materials Processing Tech., 249(2017).

DOI: 10.1016/j.jmatprotec.2017.05.034

Google Scholar

[22] X. Liu, S. Yang, In situ TiB2 Particles Reinforced copper matrix composite coating on mould steel by laser cladding, Materials Science Forum, 654-656(2010)1856-1859.

DOI: 10.4028/www.scientific.net/msf.654-656.1856

Google Scholar

[23] H. Aghajani, M. Torshizi, M. Soltanieh, A new model for growth mechanism of nitride layers in plasma nitriding of AISI 11 hot work tool steel,Vacuum, 141(2017)97-102.

DOI: 10.1016/j.vacuum.2017.03.032

Google Scholar

[24] M. Soltanieh, H. Aghajani, F. Mahboubi, Kh. A Nekouee, Surface characterization of multiple coated H11 hot work tool steel by plasma nitriding and hard chromium electroplating processes ,Vacuum, 86(2012)1470-1476.

DOI: 10.1016/j.vacuum.2012.01.003

Google Scholar

[25] C.S. Zhao, Mould Material and Heat Treatment Handbook, Beijing, Machinery Industry Press,(2008).

Google Scholar

[26] G. Du, J. Li, Z.B. Wang, and C.B. Shi, Effect of Magnesium Addition on Behavior of Collision and Agglomeration between Solid Inclusion Particles on H13 Steel Melts, Steel Research Int., 83 (2017) 1600185(1-9).

DOI: 10.1002/srin.201600185

Google Scholar

[27] J. W. Zhang, Y.J. Li, Y.S. Yang, Effect of applied pulsed magnetic field during directional solidification on solidified structure of H13 steel, Chinese Journal of Materials Research, 31 (2017)721-727.

Google Scholar

[28] Q.C. Jiang, H.L. Sui, J.R. Fang, Study and application on a new hot work die steel with high Cr, China Mould Industry Association, Proceedings of the second International Conference on mould and technology, Beijing, Machinery Industry Press, 2005, pp.246-252.

Google Scholar

[29] Q. Tong, X.C. Wu, N. Min, Research on hot-working die steel SDH3 with high hot strength, Journal of Iron and Steel,22(2010)50-54.

Google Scholar

[30] W.W. Song, Y.A. Min, X.C. Wu, Study on niobium carbides in Nb-microalloyed hot work steel, Paul Beiss, Tool Steels-deciding Factor in Worldwide Production: Proceedings of 8th international Tooling Conference, Germany, Verlag Mainz Press, VolumeⅡ(2009).

Google Scholar

[31] H. Wang, J. Li, C.B. Shi, J. Li, B. He, Evolution of Carbides in H13 Steel in Heat Treatment Process, .Materials Transactions, 58 (2017) 152-156.

DOI: 10.2320/matertrans.m2016268

Google Scholar

[32] F. Wang, X. H. Cui, Z.R. Yang, M.X. Wei, S.Q. Wang, Oxidation and tribo-oxidation of an alloy steel H13 at elevated temperature, Proceedings of the Institution of Mechanical Engineers, Part J: J. Engineering Tribology, 223 (2009) 881-885.

DOI: 10.1243/13506501jet512

Google Scholar

[33] A.G. Ning, H.J. Guo, X.C. Chen, M.B. Wang, Precipitation Behaviors and Strengthening of Carbides in H13 Steel during Annealing, Materials Transactions,56 (2015) 581-586.

DOI: 10.2320/matertrans.m2014452

Google Scholar

[34] Y. Xie, G.G. Cheng, L. Chen, Y.D. Zhang, Q.Z. Yan, The Characteristics and generating mechanism of large precipitates in Ti-containing H13 tool steel, High Temperature Materials and Processes,36 (2017)189-195.

DOI: 10.1515/htmp-2015-0177

Google Scholar

[35] Y. Xie, G.G. Cheng, L. Chen, et al, Generating Mechanism of large heterogeneous carbonitrides with multiple layers in H13+Nb Bar, Steel Research Int., 88 (2017) 1600119 (1-10).

DOI: 10.1002/srin.201600119

Google Scholar

[36] Y. Xie, G.G. Cheng, X.L. Meng, Y. Huang, Thermal stability of primary elongated V-rich carbonitrides in H13 tool steel, Metallurgical Research & Technology, 114(2017)206(1-8).

DOI: 10.1051/metal/2016072

Google Scholar

[37] M. Salmaliyan, F. Malek Ghaeni, M. Ebrahimnia, Effect of electro spark deposition process parameters on WC-Co coating on H13 steel,Surface & Coatings Technology,321(2017) 81-89.

DOI: 10.1016/j.surfcoat.2017.04.040

Google Scholar