Temperature Distribution in the Machining Zone during the Turning of a Shaft Made of the AMS5643 Steel

Article Preview

Abstract:

The paper presents the results of laboratory measurement of temperature in the machining zone during the straight turning of a shaft made of the AMS 5643 steel. The machining trials were recorded using the FLIR 620 thermographic camera, and the ThermaCam Researcher software was used to archive and analyse the measurement results. The experimental test plan for varying machining parameters (vc, ap, f) was developed using the Taguchi method, and the ANOVA was used for statistical processing of results. The experiment involved nine trials with a coated insert and nine trials with an uncoated insert. The obtained results will be used to improve the cutting process simulation model.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

58-65

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] J. Beňo, I. Maňková, Study of the Effect of the Cutting Force Decomposition on Machined Surface when Hard Turning, Key Engineering Materials 581 (2014) 157-162.

DOI: 10.4028/www.scientific.net/kem.581.157

Google Scholar

[2] B. Mikó, J. Beňo, Effect of the Working Diameter to the Surface Quality in Free-form Surface Milling, Key Engineering Materials 581 (2014) 372-377.

DOI: 10.4028/www.scientific.net/kem.581.372

Google Scholar

[3] B. Słodki,  W. Zębala,  G. Struzikiewicz, Correlation between cutting data selection and chip form in stainless steel turning, Machining Science and Technology 19/2 (2015) 217-235.

DOI: 10.1080/10910344.2015.1018530

Google Scholar

[4] Ł. Ślusarczyk, A. Matras, Influence of cutting data on the thin wall deformation in milling of difficult to cut materials, Key Engineering Materials 686 (2016) 86-91.

DOI: 10.4028/www.scientific.net/kem.686.86

Google Scholar

[5] R. Kowalczyk, A. Matras, W. Zębala, Analysis of the surface roughness after the sintered carbides turning with PCD tools, Proceedings of SPIE 9290 (2014) 929012_1 – 929012_8.

DOI: 10.1117/12.2074241

Google Scholar

[6] G. Struzikiewicz, W. Zębala, K. Rumian, Application of Taguchi method to optimization of cutting force and temperature during turning of difficult to cut materials, Key Engineering Materials 686 (2016) 114-118.

DOI: 10.4028/www.scientific.net/kem.686.114

Google Scholar

[7] S.P.F.C. Jaspers, J. H. Dautzenberg, D. A. Taminiau, Temperature Measurement in Orthogonal Metal Cutting, Int. J Advanced Manufacturing Technology, 14, (1998) 7-12.

DOI: 10.1007/bf01179411

Google Scholar

[8] H. Ning, W. Zhigang, J. Chengyu, Z. Bing, Finite element method analysis and control stratagem for machining deformation of thin-walled components, Journal of Materials Processing Technology, 139, (2003) 332-336.

DOI: 10.1016/s0924-0136(03)00550-8

Google Scholar

[9] A. Matras, M. Plaza, The FEM simulation of the thin walled aircraft engine corpus deformation during milling, Proceedings of SPIE 10031 (2016), 100310B1-100310B9.

DOI: 10.1117/12.2249048

Google Scholar

[10] Ł. Ślusarczyk, Analysis of deformations of thin wall parts in machining, Proceedings of SPIE 9662 (2015) 96624L1-96624L8.

Google Scholar

[11] Ł. Ślusarczyk, The construction of the milling process simulation models, Proceedings of SPIE 10031 (2016) 100310C1-100310C7.

Google Scholar

[12] C. Felhő, J. Kundrák, Comparison of Theoretical and Real Surface Roughness in Face Milling with Octagonal and Circular Inserts, Key Engineering Materials 581 (2014) 360-365.

DOI: 10.4028/www.scientific.net/kem.581.360

Google Scholar

[13] W. Zębala, G. Struzikiewicz, K. Rumian, M. Plaza, Simulation and optimization of physical phenomena when engine block machining - case study, Proceedings of SPIE 1031 (2016) 100310O1- 100310O8.

DOI: 10.1117/12.2249389

Google Scholar

[14] W. Zębala, J. Gawlik, A. Matras, G. Struzikiewicz, Ł. Ślusarczyk, Research of surface finish during titanium alloy turning, Key Engineering Materials, 581 (2014) 409-414.

DOI: 10.4028/www.scientific.net/kem.581.409

Google Scholar

[15] A. Matras, W. Zębala, R. Kowalczyk, Precision milling of hardened steel with CBN tools, Key Engineering Materials 581 (2014) 182-187.

DOI: 10.4028/www.scientific.net/kem.581.182

Google Scholar

[16] Ł. Ślusarczyk, The implementation of a thermal imaging camera for testing the temperature of the cutting zone in turning. Proceedings of 10031 (2016) 100310L1-100310L7.

Google Scholar

[17] A. Matras, R. Kowalczyk, Analysis of machining accuracy during free form surface milling simulation for different milling strategies, Proceedings of SPIE 9290 (2014) 929019_1 – 929019_7.

DOI: 10.1117/12.2075081

Google Scholar

[18] Ł. Ślusarczyk, G. Struzikiewicz, Hardened Steel Turning by Means of Modern CBN Cutting Tools, Key Engineering Materials 581 (2014) 188-193.

DOI: 10.4028/www.scientific.net/kem.581.188

Google Scholar