Fabrication of Battery Cathode Material Based on Hydrolytic Lignin

Article Preview

Abstract:

The relationship between the discharge performance of a lithium/hydrolytic lignin battery and the parameters of the cathode material fabrication process has been revealed. Electrochemical characterization was carried out using a galvanostatic discharge experiments. It was found that the specific capacity of hydrolytic lignin was found to be 600 mAh/g at a discharge current density of 45 μA/cm2. The results demonstrate the prospects of hydrolysis lignin-based batteries application as low-rate power sources.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

154-159

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] M. Yao, H. Senoh, S. Yamazaki, Z. Siroma, T. Sakai, K. Yasuda, J. Power Sources 195 (2010) 8336-8340.

DOI: 10.1016/j.jpowsour.2010.06.069

Google Scholar

[2] Y. Morita, S. Nishida, . T Murata, M. Moriguchi, A. Ueda, M. Satoh, K. Arifuku, K. Satoh, T. Takui, Nat. Mater. 10 (2011) 947-951.

DOI: 10.1038/nmat3142

Google Scholar

[3] T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama, J. Yoshida, J. Am. Chem. Soc. 134 (2012) 19694-19700.

DOI: 10.1021/ja306663g

Google Scholar

[4] H. Chen, M. Armand, M. Courty, M. Jiang, C.P. Grey, F. Dolhem, J. -M. Tarascon, P. Poizot, J. Am. Chem. Soc. 131 (2009) 8984-8988.

DOI: 10.1021/ja9024897

Google Scholar

[5] G. Milczarek, O. Inganäs, Science 335 (2012) 1468-1471.

Google Scholar

[6] D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, A.K. Tsvetnikov, V.I. Sergienko, Bull. Russ. Acad. Sci.: Chem. 2 (2012) 111-116 [in Russian].

Google Scholar

[7] A.K. Tsvetnikov, D.P. Opra, L.A. Matvienko, Sinebryukhov S.L., S.V. Gnedenkov, V.I. Sergienko, Russ. Patent 2, 482, 571. (2013).

Google Scholar

[8] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko: submitted to J. Ind. Eng. Chem. (2013).

Google Scholar

[9] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, J. Solid State Electrochem. 17 (2013) 2611-2621.

DOI: 10.1007/s10008-013-2136-x

Google Scholar

[10] A.N. Dey, Thin Solid Films 43 (1977) 131-171.

Google Scholar

[11] D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, J. Power Sources 68 (1997) 91-98.

DOI: 10.1016/s0378-7753(97)02575-5

Google Scholar

[12] L. Zhao, W. Wang, A. Wang, K. Yuan, S. Chen, Y. Yang, J. Power Sources 233 (2013) 23-27.

Google Scholar

[13] A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edstrom, J. Power Sources 119-121 (2003) 522-527.

DOI: 10.1016/s0378-7753(03)00277-5

Google Scholar

[14] P. Verma, P. Maire, P. Novák, Electrochim. acta 55 (2010) 6332-6341.

Google Scholar

[15] M. Winter, Z. Phys. Chem. 223 (2009) 1395-1406.

Google Scholar