Influence of Doping on the Structural Transformations of the Proton Conducting Perovskite BaCe1xYxO3-D

Article Preview

Abstract:

From neutron diffraction it is known that the BaCeO3 perovskite undergoes a sequence of phase transformations from high temperature cubic C to rhombohedral R, to orthorhombic O1 (Imma) and to orthorhombic O2 (Pnma). Doping Y3+ on the Ce4+ site introduces charge compensating O vacancies (VO) that may be partially filled with OH complexes with exposition to H2O, so making the material an ionic conductor. Anelastic relaxation experiments have been carried out on samples doped with 2%Y and 10%Y; the real part s’(T) of the complex elastic compliance presents softenings at the transitions, and the loss s’’/s’ curves allow the content of VO and H to be monitored. Doping has a strong effect on the temperature of the Pnma/R transition: with 10%Y in the fully hydrated state TO1-R increases up to 750 K while after full outgassing falls to 500 K, meaning that the introduction of ~5% VO shifts the transition of 250 K. While the effect of cation substitution on the transitions temperature is easily explained in terms of simple arguments usually valid for perovskites based on bond length considerations, the remarkable stabilization of the R phase by VO requires to take into account the anomalous sequence of phase transitions of undoped BaCeO3, where the R structure transforms into orthorhombic Pnma on cooling with the loss of an octahedral tilt system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Pages:

1296-1300

Citation:

Online since:

June 2011

Export:

Price:

[1] K.D. Kreuer, Solid State Ion. 145, 275 (2001).

Google Scholar

[2] J. Zhang, Y. Zhao, H. Xu, B. Li, D.J. Weidner, A. Navrotsky, Appl. Phys. Lett. 90, 161903 (2007).

Google Scholar

[3] F. Cordero, F. Trequattrini, F. Deganello, V. La Parola, E. Roncari and A. Sanson, Appl. Phys. Lett. 94, 181905 (2009).

DOI: 10.1063/1.3129873

Google Scholar

[4] K.S. Knight, Solid State Ion. 97, 1 (1997).

Google Scholar

[5] F. Cordero F. Craciun, F. Deganello, V. La Parola, E. Roncari and A. Sanson, Phys. Rev. B 78, 054108 (2008).

Google Scholar

[6] A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).

Google Scholar

[7] W. Rehwald, Adv. Phys. 22, 721 (1973).

Google Scholar

[8] M.A. Carpenter and E. K. H. Salje, Eur. J. Mineral. 10, 693 (1998).

Google Scholar

[9] E. K. H. Salje and H. Zhang, J. Phys.: Condens. Matter 21, 035901 (2009).

Google Scholar

[10] A.M. Glazer, Acta Cryst. B 28, 3384 (1972).

Google Scholar

[11] K. Takeuchi, C. -K. Loong, J.W. Richardson Jr., J. Guan, S.E. Dorris, U. Balachandran, Solid State Ion. 138, 63 (2000).

DOI: 10.1016/s0167-2738(00)00771-2

Google Scholar

[12] T. Mono and T. Schober, Solid State Ion. 91, 155 (1996).

Google Scholar

[13] A. Kruth, G. C. Mather, J. R. Jurado, J. T.S. Irvine, Solid State Ion. 176, 703 (2005).

Google Scholar