Effect of Microwave-Alkali Techniques on the Morphology and Physical Changes of Treated Oil Palm Empty Fruit Bunches Fiber

Article Preview

Abstract:

Empty fruit bunches fibre (EFB) consisting of 44 % cellulose, 16 % lignin and 35 % hemicelluloses component was treated using microwave-alkali (Mw-A) agitated pre-treatment so as to disrupt the recalcitrant structures in the fibre. Morphology and chemical changes of treated EFB were used as indicators to the effectiveness of Mw-A treatment. The results obtained were compared with conventional pre-treatment process. The morphology of the treated fiber was observed using scanning electron microscope. The reduction in the EFB composition during Mw-A treatment was justified by measuring the total extract cellulose; remaining lignin and hemicellulose, and ash content after the process was performed. Results revealed that Mw-A pre-treatment technique exhibited a more effective removal of lignin and hemicelluloses as compared to the conventional or chemical treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-128

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] A. Kushairi, K. L. Soh, I. Azman, H. Elina, O. A. Meilina, M. N. I. Zanal Bidin, G. Razmah, S. Shamala, K. A. P. Ghulam, Oil Palm Economic Performance In Malaysia And R&D Progress In 2017, J. Oil Palm Res. 30(2) (2018) 163-195.

Google Scholar

[2] C. H. Nurul Hazirah, M. Masturah, H. Shuhaida, H. Osman, Effect Of Various Pretreatment Methods On Empty Fruit Bunch For Glucose Production, Malaysian J. Analytical Sci. 20(6) (2016) 1474-1480.

DOI: 10.17576/mjas-2016-2006-28

Google Scholar

[3] J. Veeresh, C. W. Jin, Microbial production of lactic acid: the latest development, J. Critical Rev. Biotechnol. 36 (2016) 967-977.

Google Scholar

[4] M. Toshio, K. Hiroko, S. Tomoki, K. Hirokazu, H. Hirofumi, Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624, J. Biotechnol. 239 (2016) 83-89.

DOI: 10.1016/j.jbiotec.2016.10.014

Google Scholar

[5] C. Xingxuan, W. Xiahui, X. Yiyun, Z. Tian-Ao, L. Yuhao, H. Jiajun, T. Yiu Fai, Z. Hongsheng, G. Min-Tian, Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae, J. Biosci. Bioeng. 125 (2018) 703-709.

DOI: 10.1016/j.jbiosc.2018.01.004

Google Scholar

[6] Z. Li, L. Xin, Y. Qiang, Y. Shang-Tian, O. Jia, Y. Shiyuan, Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae, Biochem. Eng. J. 94 (2015) 92-99.

DOI: 10.1016/j.bej.2014.11.020

Google Scholar

[7] J. K. C. Rose, A. B. Bennett, Cooperative disassembly of the cellulose- xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening, Trends Plant Sci. 4(5) (1999)176-183.

DOI: 10.1016/s1360-1385(99)01405-3

Google Scholar

[8] T. A. Hsu, Pretreatment of biomass, In: Wyman, C.E. (Ed.), Handbook on Bioethanol, Production and Utilization, Washington, DC: Taylor & Francis, (1996).

Google Scholar

[9] Z. H. Hu, Z. Y. Wen, Enhancing enzymatic digestibility of switch grass by microwave-assisted alkali pre-treatment, Biochem. Eng. J. 38(3) (2008) 369-378.

DOI: 10.1016/j.bej.2007.08.001

Google Scholar

[10] J. Xiong, J. Ye, W. Z. Liang, P. M. Fan, Influence of microwave on the ultrastructure of cellulose I., J. South China Univ. Technol. 28(3) (2000) 84-89.

Google Scholar

[11] S. D. Zhu, Y. X. Wu, Z. Yu, J. Liao, Y. Zhang, Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis, Process Biochem. 40(9) (2005) 3082-3086.

DOI: 10.1016/j.procbio.2005.03.016

Google Scholar

[12] F. Hamzah, A. Idris, Enzymatic hydrolysis of treated palm oil empty fruit bunches fibre (EFB) using combination alkali-microwave techniques, J. Biotechnol. 36 (2008) S426-S427.

DOI: 10.1016/j.jbiotec.2008.07.988

Google Scholar

[13] J. Berlan, Microwaves in chemistry: Another way of heating reaction mixtures, Radiat. Phys. Chem. 45(4) (1995) 581-589.

DOI: 10.1016/0969-806x(94)00072-r

Google Scholar

[14] I. Ahmed, A. Idris, M. Y. Noordin, Rajput R. High performance ultrafiltration membranes prepared by the application of modified microwave irradiation technique, Ind. Eng. Chem. Res. 50(4) (2011) 2272-2283.

DOI: 10.1021/ie1017223

Google Scholar

[15] A. Idris, I. Ahmed, Microwave assisted polymer dissolution apparatus for membrane production, Malaysian Patent: PI 20080270 (2008).

Google Scholar

[16] L. E. Wise, M. Murphy, A. D'Addieco, Chlorite holocellulose: Its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses, Pap. Trade J. 122 (1946) 35-43.

Google Scholar

[17] S. Nara, T. Komiy, Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch, Starch, 35(12) (1983) 407-410.

DOI: 10.1002/star.19830351202

Google Scholar

[18] M. Amari, S. Masaki, Technical manual for analysis, Japan Livestock Technol. Association, (2000) 1-47.

Google Scholar

[19] T. Rezanka, K. Sigler, Biologically active compounds of semi metals biomenerilization, Phytochem. 69(3) (2008) 585-606.

DOI: 10.1016/j.phytochem.2007.09.018

Google Scholar

[20] H. Ma, W. W. Liu, X. Chen, Y. J. Wu, Z. L. Yu, Enhanced enzymatic saccharification of rice straw by microwave pretreatment, Bioresource. Technol. 100(3) (2009) 1279-1284.

DOI: 10.1016/j.biortech.2008.08.045

Google Scholar

[21] Y. A. Cengel, M. A. Boles, Thermodynamics: An engineering approach, 6th ed. New York, Mc Graw Hill, (2008).

Google Scholar

[22] N. Mosier, C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pre-treatment of lignocelluloses biomass, Bioresource Technol. 96(6) (2005) 673-686.

DOI: 10.1016/j.biortech.2005.01.010

Google Scholar

[23] T. Foyle, L. Jennings, P. Mulcahy, Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw, Bioresource Technol. 98(16) (2007) 3026-3036.

DOI: 10.1016/j.biortech.2006.10.013

Google Scholar

[24] D. M. P. Mingos, The application of microwave in chemistry. Res. Chem. Intermed. 20(1) (1994) 85-91.

Google Scholar

[25] E. T. Thostenson, T. W. Chou, Microwave processing: fundamentals and applications. Composites, Compos. Part A- Appl. S. 30(9) (1999) 1055-1071.

DOI: 10.1016/s1359-835x(99)00020-2

Google Scholar