Deformation Behaviour of Single Linear Surface Defect Nickel Nanowire at Different Temperatures Studied by Molecular Dynamics Simulations

Article Preview

Abstract:

The mechanical properties and deformation mechanism of nickel nanowire of dimension 100 Å (x-axis) × 1000 Å (y-axis) × 100 Å (z-axis) containing a single linear surface defect is studied at different temperatures using molecular dynamics simulations. The defect is created by deleting a row of atoms on the surface and is inclined at 25° to the loading axis. The tensile test is carried out at 0.01 K, 10 K, 100 K and 300 K temperature and 108 s-1strain rate. To determine the effect of temperature on the stress-strain curves, fracture and failure mechanism, a thorough investigation has taken place. Maximum strength of 21.26 GPa is observed for NW deformed at 0.01 K temperature and the strength decreased with increase in temperature. Through slip lines, the deformation relief pattern taken place by developing the extrusion areas along with intrusion over the surface defect area in all NWs deformed at respective temperatures. Further it is observed that fracture strains decrease with increase in temperature. After yielding, stacking faults associated with dislocations are generated by slip on all four {111} planes. Different type of dislocations with both intrinsic and extrinsic stacking faults are noticed. Out of all dislocation densities, Shockley partial dislocation densities has recorded a maximum value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

428-435

Citation:

Online since:

February 2020

Export:

Price:

* - Corresponding Author

[1] U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, (1990) 35–38.

Google Scholar

[2] C.M. Lieber, Solid State Commun. 107 (1998) 607–616.

Google Scholar

[3] Y.W. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, (2011).

Google Scholar

[4] K.M.K. Anthony Kelly, (2012).

Google Scholar

[5] M.S. Dresselhaus, Y. Lin, O. Rabin, M.R. Black, J. Kong, G. Dresselhaus, (n.d.) 119–167.

Google Scholar

[6] A.G.N. Sofiah, M. Samykano, K. Kadirgama, R.V. Mohan, N.A.C. Lah, Appl. Mater. Today 11 (2018) 320–337.

DOI: 10.1016/j.apmt.2018.03.004

Google Scholar

[7] R.L. Marson, B.K. Kuanr, S.R. Mishra, R.E. Camley, Z. Celinski, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25 (2007) 2619–2623.

Google Scholar

[8] W.D. Wang, C.L. Yi, K.Q. Fan, Trans. Nonferrous Met. Soc. China (English Ed. 23 (2013) 3353–3361.

Google Scholar

[9] K.C. Katakam, P. Gupta, N. Yedla, J. Mater. Eng. Perform. (2018).

Google Scholar

[10] S.F. Ferdous, A. Adnan, Comput. Mater. Sci. 90 (2014) 221–231.

Google Scholar

[11] H.F. Zhan, Y.T. Gu, C. Yan, X.Q. Feng, P.K.D. V Yarlagadda, Comput. Mater. Sci. 50 (2011) 3425–3430.

Google Scholar

[12] H.F. Zhan, Y.T. Gu, C. Yan, P.K.D. V Yarlagadda, 81 (2014) 45–51.

Google Scholar

[13] H.F. Zhan, Y.T. Gu, C. Yan, P.K.D. V Yarlagadda, 336 (2011) 498–501.

Google Scholar

[14] Y.G. Zheng, H.W. Zhang, Z. Chen, C. Lu, Y.W. Mai, Phys. Lett. Sect. A Gen. At. Solid State Phys. 373 (2009) 570–574.

Google Scholar

[15] K. Gall, J. Diao, M.L. Dunn, (2004).

Google Scholar

[16] H.S. Park, P.A. Klein, G.J. Wagner, Int. J. Numer. Methods Eng. 68 (2006) 1072–1095.

Google Scholar

[17] H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi, C. Yu, J.B.G. Iii, J. Xiao, S. Wang, Y. Huang, J.A. Rogers, 454 (2008) 3–8.

Google Scholar

[18] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, (2006).

Google Scholar

[19] M.J. Buehler, H. Gao, Ultra – Large Scale Simulations of Dynamic Materials Failure, (2006).

Google Scholar

[20] M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, C.Z. Wang, Philos. Mag. 92 (2012) 4454–4469.

Google Scholar

[21] L. Pei, C. Lu, K. Tieu, X. Zhao, L. Zhang, K. Cheng, Comput. Mater. Sci. 109 (2015) 147–156.

Google Scholar

[22] R. Rezaei, C. Deng, H. Tavakoli-Anbaran, M. Shariati, Philos. Mag. Lett. 96 (2016) 322–329.

Google Scholar

[23] W.J. Zhang, Z.L. Liu, Y.F. Peng, Phys. B Condens. Matter 449 (2014) 144–149.

Google Scholar

[24] S. PLIMPTON, Lammps. Sandia. Gov. (2011).

Google Scholar

[25] H. Liu, J. Zhou, Mater. Lett. 163 (2016) 179–182.

Google Scholar

[26] R. Cao, C. Deng, Scr. Mater. 94 (2015) 9–12.

Google Scholar

[27] Y.H. Wen, Z.Z. Zhu, R.Z. Zhu, Comput. Mater. Sci. 41 (2008) 553–560.

Google Scholar

[28] William G hoover, Phys. Rev. A (1985).

Google Scholar

[29] A.R. Setoodeh, H. Attariani, Mater. Lett. 62 (2008) 4266–4268.

Google Scholar

[30] W. Zhu, H. Wang, W. Yang, Acta Mater. 60 (2012) 7112–7122.

Google Scholar

[31] J. Diao, K. Gall, M.L. Dunn, J.A. Zimmerman, Acta Mater. 54 (2006) 643–653.

Google Scholar

[32] C.L. Kelchner, S. Plimpton, Phys. Rev. B - Condens. Matter Mater. Phys. 58 (1998) 11085–11088.

Google Scholar

[33] A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2010).

Google Scholar

[34] A. Stukowski, V. V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20 (2012).

Google Scholar

[35] W.P. Wu, Z.Z. Yao, Theor. Appl. Fract. Mech. 62 (2012) 67–75.

Google Scholar

[36] E.A. Alfyorova, D. V. Lychagin, Mech. Mater. 117 (2018) 202–213.

Google Scholar

[37] D. V. Lychagin, E.A. Alfyorova, A.S. Tailashev, Russ. Phys. J. 58 (2015) 717–723.

Google Scholar

[38] P. Taylor, J. Man, K. Obrtlík, J. Polák, (2009) 37–41.

Google Scholar

[39] M.G.H. Dieter, George E, Mechanical Metallurgy, (1986).

Google Scholar

[40] W.-P. Wu, Y.-L. Li, X.-Y. Sun, Comput. Mater. Sci. 109 (2015) 66–75.

Google Scholar

[41] M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Science (80-. ). 300 (2003) 1275–1277.

Google Scholar

[42] Y.Z. Yanqiu Zhang, Shuyong Jiang⁎, Xiaoming Zhu, Phys. E 90 (2017) 90–97.

Google Scholar

[43] J. Zhang, S. Ghosh, J. Mech. Phys. Solids 61 (2013) 1670–1690.

Google Scholar