Impact Energy Absorbing System for Space Lander Using Hemispherical Open-Cell Porous Aluminum

Article Preview

Abstract:

Impact energy absorbing system for space lander is an important technology for space exploring missions. Open-cell porous aluminum manufactured through 3D selective laser melting process has been used on the energy absorbing system. Compression tests for cylindrical and hemispherical shaped porous aluminum with different porosities revealed the high potential as an energy absorbing component. It was found that the suitable heat treatment were effective to increase the energy absorbing potential of the porous aluminum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-341

Citation:

Online since:

October 2018

Export:

Price:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, Prog. Mater. Sci. 46 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, ALPORAS Aluminum foam: Production process, properties, and applications, Adv. Eng. Mater. 2 (2000) 179-183.

DOI: 10.1002/(sici)1527-2648(200004)2:4<179::aid-adem179>3.0.co;2-g

Google Scholar

[3] H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, J. Banhart, Process control in aluminum foam production using real-time X-ray radioscopy, Adv. Eng. Mater. 4 (2002) 814-823.

DOI: 10.1002/1527-2648(20021014)4:10<814::aid-adem814>3.0.co;2-5

Google Scholar

[4] X. Jian, C. Hao, Q. Guibao, Y. Yang, L. Xuewei, Investigation on relationship between porosity and spacer content of titanium foams, Mater. Design 88 (2015) 132-137.

DOI: 10.1016/j.matdes.2015.08.125

Google Scholar

[5] B. V. Krishna, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3 (2007) 997-1006.

DOI: 10.1016/j.actbio.2007.03.008

Google Scholar

[6] T. Tancogne-Dejean, A. B. Spierings, D. Mohr , Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater. 116 (2016) 14-28.

DOI: 10.1016/j.actamat.2016.05.054

Google Scholar

[7] A. Takezawa, M. Kobashi, Y. Koizumi, M. Kitamura, Porous metal produced by selective laser melting with effective isotropic thermal conductivity close to the Hashin-Shtrikman bound, Int. J. Heat Mass Transfer 105 (2017) 564-572.

DOI: 10.1016/j.ijheatmasstransfer.2016.10.006

Google Scholar

[8] R. Montanini, Measurement of strain rate sensitivity of aluminium foams for energy dissipation, Int. J. Mech. Sci. 47 (2005) 26-42.

DOI: 10.1016/j.ijmecsci.2004.12.007

Google Scholar

[9] X. Yue, K. Matsuo and K. Kitazono, Compressive behavior of open-cell titanium foams with different unit cell geometries, Mater. Trans. 58 (2017) 1587-1592.

DOI: 10.2320/matertrans.l-m2017834

Google Scholar

[10] L. J. Gibson, M. F. Ashby, The mechanics of three-dimensional cellular materials, Proc. Royal Soc. London A 382 (1982) 43-59.

Google Scholar