Effect of Hydrogen Decrepitation Pressure on the Particle Size of Rare Earth Based Alloys for Ni-Mh Battery Production

Article Preview

Abstract:

This paper presents the results obtained from the hydrogenation and decrepitation of three LaNi-based alloys, La0.7Mg0.3Al0.3Mn0.4Co0.5Ni3.8, La0.7Mg0.3Al0.3Mn0.4Cu0.5Ni3.8 and La0.7Mg0.3Al0.3Mn0.4Sn0.5Ni3.8, in the as-cast condition. The procedure for decrepitating the alloys to be used in the negative electrode of the batteries was carried out using a combination of various hydrogen pressures (2-9 bar) at room temperature. At 2 bar of H2 it was revealed that Co, Cu and Sn have influence on the microstructures of the hydrogenated alloys and on the efficiency of hydrogen decrepitation. None of these alloys required thermal heating to activate and start the hydrogen absorption process. The decrepitated materials were characterized by scanning electron microscopy (SEM). The electrochemical measurements were performed using the tested negative electrode between two Ni (OH)2 electrodes as a battery cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

637-642

Citation:

Online since:

September 2018

Export:

Price:

[1] Hongmei, L. Guoxun, Z.Chuanhua, W. Ruikun: Journal of Power Sources Vol. 77 (1999), p.123.

DOI: 10.1016/s0378-7753(98)00184-0

Google Scholar

[2] J.J. Reilly, G.D. Adzic, J.R. Johnson, T. Vogt, S. Mukerjee, J. McBreen: J. Alloys and Compounds Vols. 293-295 (1999), p.569.

DOI: 10.1016/s0925-8388(99)00413-2

Google Scholar

[3] F. Cuevas, J.M. Joubert, M. Latroche, A. Percheron-Guegan: Applied Physics A Mat. Sc. and Processing Vol. 72 (2001), p.225.

Google Scholar

[4] F. Feng, M. Geng, D.O. Northwood, International Journal of Hydrogen Energy Vol. 26 (7) (2001), p.725.

Google Scholar

[5] A. K. Shukla, S. Venugopalan, B. Hariprakash, Journal of Power Sources Vol. 100 (1-2) (2001), p.125.

Google Scholar

[6] K. Hong: Journal of Alloys and Compounds Vol. 321 (2) (2001), p.307.

Google Scholar

[7] R.C. Ambrosio, E.A. Ticianelli: Journal of Power Sources Vol. 110 (1) (2002), p.73.

Google Scholar

[8] K. Kadir, D. Noreus, I. Yamashita: Journal Alloys and Compounds Vol. 345 (1-2) (2002), p.140.

Google Scholar

[9] I. P. Jain, M. I. S. Abu Dakka: International Journal of Hydrogen Energy Vol. 27 (4) (2002), p.395.

Google Scholar

[10] H. Ye, Y.X. Huang, T.S. Huang, H. Zhang: Journal of Alloys and Compounds Vols. 330-332 (2002), p.866.

Google Scholar

[11] Y. Liu, H. Pan, M. Gao, Y. Zhu, Y. Lei, Q. Wang: International J. of Hydrogen Energy Vol. 29 (3) (2004), p.297.

Google Scholar

[12] H. Pan, Q. Jin, M. Gao, Y. Liu, R. Li, Y. Lei: Journal of Alloys and Compounds Vol. 373 (2004), p.237.

Google Scholar

[13] H. Pan, N. Chen, M. Gao, R. Li, Y. Lei, Q. Wang: Journal Alloys and Compounds Vol. 397 (1-2) (2005), p.306.

Google Scholar

[14] H. Pan, X. Wu, M. Gao, N. Chen, Y. Yue, Y. Lei: International Journal of Hydrogen Energy Vol. 31 (2006), p.517.

Google Scholar

[15] L.M.C. Zarpelon, E. Galego, H. Takiishi, R.N. Faria: Materials Research Vol. 11 (1) (2008), p.17.

Google Scholar

[16] J.C.S. Casini, Z. Guo, H.K Liu, R.N. Faria, H. Takiishi: Batteries Vol. 1. (2015), p.3.

Google Scholar

[17] L.M.C. Zarpelon, R.N. Faria: Materials Science Forum Vol. 802 (2014), p.421.

Google Scholar

[18] J.C.S. Casini, Z.Guo, H.K Liu, E.A. Ferreira, R.N. Faria, H. Takiishi; Transactions of Nonferrous Metals Society of China Vol. 25 (2015), p.520.

DOI: 10.1016/s1003-6326(15)63633-0

Google Scholar