Development of Mo/γ-Al2O3-CeO2 Catalyst with High Thermal Stability by Modified Impregnation Method

Article Preview

Abstract:

In the present studies, different characterization techniques have been utilized to evaluate the stability of catalysts prepared by modified impregnation method. The results indicated that strong metal-support (Mo-support) interaction existed in the γ-Al2O3-CeO2 supported catalyst with higher CeO2 loading as compared to the Mo/γ-Al2O3 catalyst. This suggested that the addition of CeO2 into the γ-Al2O3 enhanced the metal-support interaction, thus decreases the reducibility, depending on the CeO2 loading. Similarly, the catalyst with higher CeO2 loading exhibited lower Ce 3d and higher Mo 3d binding energies respectively, supporting the TPR results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

491-495

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] M. Farooq, A. Ramli, D. Subbarao, Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts, Journal of Cleaner Production, 59 (2013) 131-140.

DOI: 10.1016/j.jclepro.2013.06.015

Google Scholar

[2] M. García-Diéguez, E. Finocchio, M.Á. Larrubia, L.J. Alemany, G. Busca, Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane, J. Catal. 274 (2010) 11-20.

DOI: 10.1016/j.jcat.2010.05.020

Google Scholar

[3] L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals, Int. J. Hydrogen Energ. 34 (2009) 5049-5060.

DOI: 10.1016/j.ijhydene.2009.03.050

Google Scholar

[4] S. Damyanova, C.A. Perez, M. Schmal, J.M.C. Bueno, Characterization of ceria-coated alumina carrier, General, 234 (2002) 271-282.

DOI: 10.1016/s0926-860x(02)00233-8

Google Scholar

[5] X. Li, W. Zhang, S. Liu, L. Xu, X. Han, X. Bao, The role of alumina in the supported Mo/HBeta–Al2O3 catalyst for olefin metathesis: A high-resolution solid-state NMR and electron microscopy study, J. Catal. 250 (2007) 55-66.

DOI: 10.1016/j.jcat.2007.05.019

Google Scholar

[6] R. Cuevas, J. Ramı́rez, G. Busca, Fluoride modification of Mo/Al2O3 catalysts: Characterization of the changes induced in support and Mo phases, J. Fluorine. Chem. 122 (2003) 151-158.

DOI: 10.1016/s0022-1139(03)00054-x

Google Scholar

[7] J. Batista, A. Pintar, J.P. Gomilšek, A. Kodre, F. Bornette, On the structural characteristics of γ-alumina-supported Pd–Cu bimetallic catalysts, Appl. Catal. A-Gen. 217 (2001) 55-68.

DOI: 10.1016/s0926-860x(01)00580-4

Google Scholar

[8] A. Folorunsho, K. Manoj, M. Gudimella, L.D. Sharma, Preparation and characterization of molybdenum hydrotreating catalyst supported on MgO/Al2O3 mixed oxide, Indian J. Chem. Techn. 11 (2004) 326-330.

Google Scholar

[9] L. Qu, W. Zhang, P.J. Kooyman, R. Prins, MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica–alumina supports, J. Catal. 215 (2003) 7-13.

DOI: 10.1016/s0021-9517(02)00181-1

Google Scholar

[10] S. Rajagopal, H.J. Marini, J.A. Marzari, R. Miranda, Silica-alumina-supported acidic molybdenum catalysts - TPR and XRD characterization, J. Catal. 147 (1994) 417-428.

DOI: 10.1006/jcat.1994.1159

Google Scholar

[11] D. Andreeva, P. Petrova, J.W. Sobczak, L. Ilieva, M. Abrashev, Gold supported on ceria and ceria–alumina promoted by molybdena for complete benzene oxidation, Appl. Catal B-Environ. Environmental, 67 (2006) 237-245.

DOI: 10.1016/j.apcatb.2006.05.004

Google Scholar

[12] F.B. Noronha, M.A.S. Baldanza, R.S. Monteiro, D.A.G. Aranda, A. Ordine, M. Schmal, The nature of metal oxide on adsorptive and catalytic properties of Pd/MeOx/Al2O3 catalysts, Appl. Catal. A-Gen. 210 (2001) 275-286.

DOI: 10.1016/s0926-860x(00)00824-3

Google Scholar

[13] J. Medema, C. van Stam, V.H.J. de Beer, A.J.A. Konings, D.C. Koningsberger, Roman spectroscopic study of Co-Mo/γ-Al2O3 catalysts, J. Catal. 53 (1978) 386-400.

DOI: 10.1016/0021-9517(78)90110-0

Google Scholar

[14] M. Kumar, F. Aberuagba, J.K. Gupta, K.S. Rawat, L.D. Sharma, G. Murali Dhar, Temperature-programmed reduction and acidic properties of molybdenum supported on MgO–Al2O3 and their correlation with catalytic activity, J. Mol. Catal. A-Chem. 213 (2004).

DOI: 10.1016/j.molcata.2003.12.005

Google Scholar

[15] S.P.A. Louwers, R. Prins, Ni EXAFS studies of the Ni-Mo-S structure in carbon-supported and alumina-supported Ni-Mo catalysts, J. Catal. 133 (1992) 94-111.

DOI: 10.1016/0021-9517(92)90188-n

Google Scholar

[16] C. Pophal, F. Kameda, K. Hoshino, S. Yoshinaka, K. Segawa, Hydrodesulfurization of dibenzothiophene derivatives over TiO2-Al2O3 supported sulfided molybdenum catalyst, Catal. Today 39 (1997) 21-32.

DOI: 10.1016/s0920-5861(97)00085-0

Google Scholar

[17] S. Damyanova, J.M.C. Bueno, Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts, Applied Catalysis A: General, 253 (2003) 135-150.

DOI: 10.1016/s0926-860x(03)00500-3

Google Scholar

[18] B. Li, S. Li, Y. Wang, N. Li, W. Zhang, B. Lin, Intergrowth Effects in CeO2-γ-Al2O3 Mixed Oxides, Chinese Journal of Catalysis, 31 (2010) 528-534.

DOI: 10.1016/s1872-2067(09)60067-x

Google Scholar

[19] J.L.G. Fierro, J. Soria, J. Sanz, J.M. Rojo, Induced changes in ceria by thermal treatments under vacuum or hydrogen, J. Solid State. Chem. 66 (1987) 154-162.

DOI: 10.1016/0022-4596(87)90230-1

Google Scholar

[20] H. Wang, H. Guan, L. Duan, Y. Xie, Dispersion of MgO on Pt/γ-Al2O3 and the threshold effect in NOx storage, Catalysis Communications, 7 (2006) 802-806.

DOI: 10.1016/j.catcom.2006.03.003

Google Scholar

[21] M.F. Gomez, L.E. Cadús, M.C. Abello, Preparation and characterization of MgO-γ-Al2O3 composite oxides, Solid State Ionics, 98 (1997) 245-249.

DOI: 10.1016/s0167-2738(97)00109-4

Google Scholar