Structures and Properties of Laser-Assisted Cold-Sprayed Aluminum Coatings

Article Preview

Abstract:

In the cold spray process, solid particles impact on a surface with high kinetic energy, deform plastically and form a coating. This enables the formation of pure and dense coating structures. Even more, coating performance and deposition efficiency can be improved by assisting the process with a laser. Laser-assisted cold spraying (LACS) has shown its potential to improve coating properties compared with traditional cold spraying. In this study, coating quality improvement was obtained by using a co-axial laser spray (COLA) process which offers a new, cost-effective laser-assisted cold spray technique, for high-quality deposition and repair. In the COLA process, the sprayed surface is laser heated while particles hit the surface. This assists the better bonding between particles and substrate and leads to the formation of tight coating structures. This study focuses on the evaluation of the microstructural characteristics and mechanical properties (e.g., hardness and bond strength) of LACS metallic coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

984-989

Citation:

Online since:

November 2016

Export:

Price:

[1] V. Champagne, Ed., 2007, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Ltd., Cambridge, England, 362 p.

Google Scholar

[2] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, V. Fomin, 2007 Cold Spray Technology, 1st ed., Elsevier, printed in the Netherlands, 328 p.

DOI: 10.1016/b978-008045155-8/50004-1

Google Scholar

[3] T. Stoltenhoff, H. Kreye, H. Richter, An Analysis of the Cold Spray Process and its Coatings, J. Therm. Spray Technol., 11(4), 2001, pp.542-550.

DOI: 10.1361/105996302770348682

Google Scholar

[4] T. Van Steenkiste, J. Smith, R. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 154, 2002, pp.237-252.

DOI: 10.1016/s0257-8972(02)00018-x

Google Scholar

[5] T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Development of a generalized parameter window for cold spray deposition, Acta Mater., 54, 2006, pp.729-742.

DOI: 10.1016/j.actamat.2005.10.005

Google Scholar

[6] T. Van Steenkiste, J. Smith, R. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 154, 2002, pp.237-252.

DOI: 10.1016/s0257-8972(02)00018-x

Google Scholar

[7] T. Stoltenhoff, H. Kreye, H. Richter, An Analysis of the Cold Spray Process and its Coatings, J. Therm. Spray Technol., 11(4), 2001, pp.542-550.

DOI: 10.1361/105996302770348682

Google Scholar

[8] M. Bray, A. Cockburn, W. O'Neill, The Laser-assisted Cold Spray process and deposit characterization, Surf. Coat. Technol., 203, 2009, p.2851–2857.

DOI: 10.1016/j.surfcoat.2009.02.135

Google Scholar

[9] M. Kulmala, H. Koivuluoto, P. Vuoristo, Influence of laser irradiation on formation of low-pressure cold sprayed coatings. Thermal Spray 2008: Thermal Spray Crossing Borders, June 2-4, 2008, Maastricht, The Netherlands, DVS.

DOI: 10.31399/asm.cp.itsc2008p0938

Google Scholar

[10] D. Christoulis, M. Jeandin, E. Irissou, J. -G. Legoux, W. Knapp, Laser-Assisted Cold Spray (LACS), Nd YAG Laser, D.C. Dumitras (Ed. ), In Tech, Chapter 5, 2012, pp.59-96.

DOI: 10.5772/36104

Google Scholar

[11] M. Tlotleng, M. Shukla, E. Akinlabi, S. Pityana, Application of Laser Assisted Cold Spraying Process for metal deposition, Surface Engineering Techniques and Applications: Research Advancements, 2014, pp.177-221.

DOI: 10.4018/978-1-4666-5141-8.ch006

Google Scholar

[12] C. Allen, T. Marrocco, P. McNutt, H. Koivuluoto, J. Latokartano, P. Vuoristo, R. Olsson, A Novel Coaxially Laser-Assisted (COLA) Cold Spray System, International Thermal Spray Conference, ITSC2015, May 11-14, 2015, Long Beach, California, USA, 2015, pp.210-216.

DOI: 10.31399/asm.cp.itsc2015p0210

Google Scholar

[13] E.O. Olakanmi, M. Tlotleng, C. Meacock, S. Pityana, M. Doyoyo, Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt. %Si Coatings: Effects of Laser Power, The Journal of The Minerals, Metals & Materials Society, 65 (6), 2013, pp.776-783.

DOI: 10.1007/s11837-013-0611-6

Google Scholar

[14] E.O. Olakanmi, M. Doyoyo, Laser-Assisted Cold-Sprayed Corrosion-and Wear-Resistant Coatings: A Review, J. Therm. Spray Technol., 23(5), 2014, pp.765-785.

DOI: 10.1007/s11666-014-0098-x

Google Scholar

[15] E.O. Olakanmi: Optimization of the Quality Characteristics of Laser-Assisted Cold-Sprayed (LACS) Aluminum Coatings with Taguchi Design of Experiments (DOE), Mater Manuf Process, 2015, p.1–10.

DOI: 10.1080/10426914.2014.984306

Google Scholar

[16] P. Richter, B. Jodoin, L. Ajdelsztajn, E.J. Lavernia, Substrate Roughness and Thickness Effects on Cold Spray Nanocrystalline Al-Mg Coatings, J. Therm. Spray Technol., 15(6), 2006, pp.246-254.

DOI: 10.1361/105996306x108174

Google Scholar

[17] Information on COLA project website: http: /www. cola-project. eu (18. 1. 2016).

Google Scholar

[18] T. Stoltenhoff, C. Borchers, F. Gärtner, H. Kreye, Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings, Surf. Coat. Technol., 200, 2006, pp.4947-4960.

DOI: 10.1016/j.surfcoat.2005.05.011

Google Scholar

[19] E. Schubert, I. Zerner, G. Sepold, New Possibilities for Joining by Using High Power Diode Lasers, LAI Proceedings ICALEO' 98, (1998).

DOI: 10.2351/1.5059189

Google Scholar

[20] H. Koivuluoto, P. Vuoristo, Structure and corrosion properties of cold sprayed coatings: a review, Surf. Eng., 30(6), 2014, pp.404-413.

DOI: 10.1179/1743294413y.0000000201

Google Scholar