The Effects of Intercritical Annealing Temperature and Initial Microstructure on the Stability of Retained Austenite in a 0.1C-6Mn Steel

Article Preview

Abstract:

The effects of the intercritical annealing temperature and initial microstructure on the stability of retained austenite were investigated for a 0.1C-6Mn (wt-%) steel. Medium-Mn transformation-induced plasticity (TRIP) steels exhibit a strong dependence of their mechanical properties on the variation of intercritical annealing temperature. This behavior is strongly linked to the amount and stability of the retained austenite. Thus, interrupted tensile tests were used to examine the effect of annealing temperature on the stabilization of the retained austenite. Detailed microstructural investigations were employed to elaborate the effects of its chemical and mechanical stabilization. Furthermore, the final microstructure was varied by applying the batch annealing step to an initial non-deformed and deformed microstructure respectively. Retained austenite stability along with resulting mechanical properties of the investigated medium-Mn TRIP steel was significantly influenced as the amount and morphology of the respective phases altered as a consequence of both initial microstructure and applied intercritical annealing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1847-1852

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] Y. -K. Lee, J. Han, Mater. Sci. Technol. 31(2013) 843-856.

Google Scholar

[2] D. K. Matlock, J. G. Speer, E. De Moor, P. J. Gibbs, Jestech 15(2012) 1-12.

Google Scholar

[3] M. J. Merwin, Mater. Sci. Forum 539-54(2007) 4327-4332.

Google Scholar

[4] S. Lee, S. -J. Lee, B. C. De Cooman, Acta Mater. 59(2011) 7546–7553.

Google Scholar

[5] R. Sun, W. Xu, C. Wang, J. Shi, H. Dong, W. Cao, Steel Res. Int. 83(2012) 316-321.

Google Scholar

[6] T. Hanamura, S. Torizuka, A. Sunahara, M. Imagumbai, H. Takechi, ISIJ Int. 51(2011) 685-687.

DOI: 10.2355/isijinternational.51.685

Google Scholar

[7] K. Steineder, M. Dikovits, C. Beal, C. Sommitsch, D. Krizan, R. Schneider, Key Eng. Mater. 651-653(2015) 120-125.

DOI: 10.4028/www.scientific.net/kem.651-653.120

Google Scholar

[8] C. Wang, W. Cao, J. Shi, C. Huang, H. Dong, Mater. Sci. Eng., A 562(213) 89-95.

Google Scholar

[9] A. Arlazarov, A. Hazotte , O. Bouaziz , M. Gouné, F. Kegel, Mater. Sci. Technol. (2012) 1124-1131.

Google Scholar

[10] H. Haunschmid, E. Tragl, J. Strutzenberger, G. Angeli, A. Pichler, J. Faderl, B.C. De Cooman, Mater. Sci. Technol. (2009) 1294–1307.

Google Scholar

[11] D.C. Ludwigson, J.A. Berger, J. Iron Steel Inst. (1969) 63–69.

Google Scholar

[12] O. Matsumura, Y. Sakuma, H. Takechi, Scripta Metall. 21(1987) 1301-06.

Google Scholar

[13] K. Steineder, R. Schneider, D. Krizan, C. Béal, C. Sommitsch, Steel Res. Int. 86(2015) 1179–1186.

DOI: 10.1002/srin.201400551

Google Scholar

[14] S. Lee, S. -J. Lee, B.C. De Cooman, Scr. Mater. 65(2011) 225–228.

Google Scholar

[15] D. Krizan, B.C. De Cooman, Metall. Mater. Trans. A. 45(2014) 3481–3492.

Google Scholar

[16] J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A. 528(2011) 4516–4521.

Google Scholar