Comparison of Test Methods for Proper Characterization of VT in SiC MOSFETs

Article Preview

Abstract:

A survey of methods for characterizing threshold voltage (VT) drift when applied to commercial SiC DMOSFETs was conducted to explore how results can vary from one test to another. Typical linear-with-log-stress-time VT drift was observed with a rate of increase near 50–60 mV/dec for all methods. However, the magnitude of the drift varied greatly depending on the time delay between stress and measurement. A power law recovery ( ) common to all methods results in much smaller VT drifts when using slower methods, meaning long delays between stress and measurement can lead to tests that are unable to adequately discriminate bad devices from good.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

833-839

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, Electron Devices IEEE Trans. On, vol. 62, no. 2, p.316–323, Feb. (2015).

DOI: 10.1109/ted.2014.2356172

Google Scholar

[2] T. Grasser, B. Kaczer, W. Gös, H. Reisinger, T. Aichinger, P. Hehenberger, P. -J. Wagner, F. Schanovsky, J. Franco, M. T. Luque, and M. Nelhiebel, The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps, IEEE Trans. Electron Devices, vol. 58, no. 11, p.3652–3666, Nov. (2011).

DOI: 10.1109/ted.2011.2164543

Google Scholar

[3] M. Sometani, D. Okamoto, S. Harada, H. Ishimori, S. Takasu, T. Hatakeyama, M. Takei, Y. Yonezawa, K. Fukuda, and H. Okumura, Exact Characterization of Threshold Voltage Instability in 4H-SiC MOSFETs by Non-Relaxation Method, Mater. Sci. Forum, vol. 821–823, p.685–688, Jun. (2015).

DOI: 10.4028/www.scientific.net/msf.821-823.685

Google Scholar

[4] M. Gurfinkel, H. D. Xiong, K. P. Cheung, J. S. Suehle, J. B. Bernstein, Y. Shapira, A. J. Lelis, D. Habersat, and N. Goldsman, Characterization of Transient Gate Oxide Trapping in SiC MOSFETs Using Fast I – V Techniques, Electron Devices IEEE Trans. On, vol. 55, no. 8, p.2004–2012, (2008).

DOI: 10.1109/ted.2008.926626

Google Scholar

[5] A. Lelis, R. Green, M. El, and D. Habersat, Effect of Stress and Measurement Conditions in Determining the Reliability of SiC Power MOSFETs, ECS Trans., vol. 50, no. 3, p.251–256, Mar. (2013).

DOI: 10.1149/05003.0251ecst

Google Scholar

[6] R. Green, A. Lelis, and D. Habersat, Application of reliability test standards to SiC Power MOSFETs, in Reliability Physics Symposium (IRPS), 2011 IEEE International, 2011, p. EX. 2. 1 –EX. 2. 9.

DOI: 10.1109/irps.2011.5784573

Google Scholar

[7] B. Ozpineci and L. Tolbert, Smaller, Faster, Tougher, IEEE Spectrum, Oct-(2011).

DOI: 10.1109/mspec.2011.6027247

Google Scholar

[8] Wide Bandgap Semiconductors: Pursuing the Promise, U.S. Department of Energy, Energy Efficiency & Renewable Energy, DOE/EE-0910, Apr. (2013).

Google Scholar

[9] B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, Disorder-controlled-kinetics model for negative bias temperature instability and its experimental verification, in Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, 2005, p.381.

DOI: 10.1109/relphy.2005.1493117

Google Scholar

[10] A. Kerber, E. Cartier, L. Pantisano, M. Rosmeulen, R. Degraeve, T. Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, Characterization of the VT-instability in SiO2/HfO2 gate dielectrics, 2003, p.41 – 45.

DOI: 10.1109/relphy.2003.1197718

Google Scholar

[11] T. Grasser, Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities, Microelectron. Reliab., vol. 52, no. 1, p.39–70, Jan. (2012).

DOI: 10.1016/j.microrel.2011.09.002

Google Scholar

[12] G. Pobegen and T. Grasser, Efficient Characterization of Threshold Voltage Instabilities in SiC nMOSFETs Using the Concept of Capture-Emission-Time Maps, Mater. Sci. Forum, vol. 740–742, p.757–760, Jan. (2013).

DOI: 10.4028/www.scientific.net/msf.740-742.757

Google Scholar

[13] S. Potbhare, N. Goldsman, A. Lelis, J. M. McGarrity, F. B. McLean, and D. Habersat, A Physical Model of High Temperature 4H-SiC MOSFETs, Electron Devices IEEE Trans. On, vol. 55, no. 8, p.2029–2040, (2008).

DOI: 10.1109/ted.2008.926665

Google Scholar

[14] D. B. Habersat and A. J. Lelis, Improved Observation of SiC/SiO2 Oxide Charge Traps Using MOS C-V, Mater. Sci. Forum, vol. 679–680, p.366–369, Mar. (2011).

DOI: 10.4028/www.scientific.net/msf.679-680.366

Google Scholar

[15] JEDEC Standard - Temperature, Bias, and Operating Life, JEDEC Solid State Technology Association, JESD22-A108D, Nov. (2010).

Google Scholar

[16] M. Denais, C. Parthasarathy, G. Ribes, Y. Rey-Tauriac, N. Revil, A. Bravaix, V. Huard, and F. Perrier, On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET's, 2004, p.109 – 112.

DOI: 10.1109/iedm.2004.1419080

Google Scholar