Spark Plasma Sintering and Strength Behavior under Compressive Loading of Mg-PSZ/Al2O3-TRIP-Steel Composites

Article Preview

Abstract:

Composite materials, which consist of a metastable austenitic TRIP-steel matrix (CrMnNi TRIPsteel; TRansformation Induced Plasticity) reinforced by alumina particles (25 vol.% ceramic, designated as AT 25/75) and reinforced by alumina and MgO partially stabilized zirconia particles (Mg-PSZ) (35 vol.% ceramic, designated as AT 25/75 + MgPSZ) were synthesized through spark plasma sintering (SPS). In the AT 25/75 + MgPSZ, the steel particles were mainly surrounded by alumina. Hence, mostly steel/alumina and alumina/MgPSZ interfaces existed. The mechanical behavior of the as-sintered samples was characterized by compression tests at room temperature and 40 °C and in a range of strain rates between 103 s-1 and 103 s1. The influence of the ceramic content, strain rate and temperature on TRIP-effect of the steel matrix was investigated. Due to the increasing ceramic volume fraction, AT 25/75 + MgPSZ exhibits the highest compressive yield strength under all loading conditions and no strain rate sensitivity. This composite showed no measurable TRIP-effect, due to the low fracture strain. The deformation-induced α’martensite within the steel particles in pure steel and AT 25/75 primary depends on the testing temperature and the strain rate. This is attributed to an increase of stacking fault energy with rising temperature. High strain rates cause adiabatic heating, counteracting the martensitic transformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

182-188

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development - properties - application, Int. J. Plasticity 16 (2000), 1391–1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[2] S. Wolf, S. Martin, L. Krüger, U. Martin, Constitutive modelling of the rate dependent flow stress of cast high-alloyed metastable austenitic TRIP/TWIP steel, Mat. Sci. Eng. A 594 (2014), 72–81.

DOI: 10.1016/j.msea.2013.11.041

Google Scholar

[3] Y. Guo, Y. Zhou, X. Duan, D. Li, T. Lei, TEM observation of dynamic distortion in 2Y-PSZ/steel composites, Ceram. Int. 30 (2004), 75–80.

DOI: 10.1016/s0272-8842(03)00065-8

Google Scholar

[4] S. Decker, L. Krüger, S. Richter, S. Martin, U. Martin, Strain-rate-dependent flow stress and failure of an Mg-PSZ reinforced TRIP matrix composite produced by spark plasma sintering, Steel Res. Int. 83 (2012), 521–528.

DOI: 10.1002/srin.201100268

Google Scholar

[5] L. Krüger, S. Decker, R. Ohser-Wiedemann, D. Ehinger, S. Martin, U. Martin, H. J. Seifert, Strength and failure behaviour of spark plasma sintered steel-zirconia composites under compressive loading, Steel Res. Int. 82 (2011), 1017–1021.

DOI: 10.1002/srin.201100082

Google Scholar

[6] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing mechanism of Mg-PSZ particles in highly-alloyed TRIP steel, Steel Res. Int. 82 (2011), 1133–1140.

DOI: 10.1002/srin.201100099

Google Scholar

[7] A. Glage, S. Martin, S. Decker, C. Weigelt, M. Junghanns, C. G. Aneziris, U. Martin, L. Krüger, H. Biermann, Cyclic deformation of powder metallurgy stainless steel/Mg-PSZ composite materials, Steel Res. Int. 83 (2012), 554–564.

DOI: 10.1002/srin.201100288

Google Scholar

[8] L. Hälldahl, M. Nygren, Thermal transport properties of stainless steel/zirconia compacts as a function of composition and temperature, Mater. Sci. Forum 492–493 (2005), 567–572.

DOI: 10.4028/www.scientific.net/msf.492-493.567

Google Scholar

[9] H. Mishina, Y. Inumaru, K. Kaitoku, Fabrication of ZrO2/AISI316L functionally graded materials for joint prostheses, International Symposium on Inorganic Interfacial Engineering 2006 475 (2008), 141–147.

DOI: 10.1016/j.msea.2007.05.004

Google Scholar

[10] S. Decker, L. Krüger, I. Schneider, Influence of steel and Mg-PSZ additions on the compressive deformation behavior of an Al2O3 reinforced TRIP/TWIP-matrix-composite, in: EPMA (Ed. ), Euro PM2013 Congress Proceedings, International Powder Metallurgy Congress and Exhibition, Gothenburg, 2013, 113–118.

Google Scholar

[11] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci. 41 (2006), 763–777.

DOI: 10.1007/s10853-006-6555-2

Google Scholar

[12] P. J. Brofman, G. S. Ansell, On the effect of carbon on the stacking fault energy of austenitic stainless steels, Met. Trans. A 9 (1978), 879–880.

DOI: 10.1007/bf02649799

Google Scholar

[13] G. T. Gray, Classic split-Hopkinson pressure bar testing, in: H. Kuhn, D. Medlin (Eds. ), ASM-Handbook, ASM International, Ohio, 2000, 462–476.

DOI: 10.31399/asm.hb.v08.a0003296

Google Scholar

[14] S. Henschel, L. Krüger, K. Mandel, M. Radajewski, Studie zur Impulsformung an Split-Hopkinson-Aufbauten, in: B. Wielage (Ed. ), 15. Werkstofftechnisches Kolloquium, Chemnitz, 2012, 422–427.

Google Scholar

[15] M. Wendler, A. Weiß, L. Krüger, J. Mola, A. Franke, A. Kovalev, S. Wolf, Effect of manganese on microstructure and mechanical properties of cast high alloyed CrMnNi-N steels, Adv. Eng. Mater. 15 (2013), 558–565.

DOI: 10.1002/adem.201200318

Google Scholar

[16] A. Saeed-Akbari, L. Mosecker, A. Schwedt, W. Bleck, Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: part I. mechanism maps and work-hardening behavior, Metall. Mater. Trans. A 43 (2012).

DOI: 10.1007/s11661-011-0993-4

Google Scholar

[17] L. Krüger, S. Wolf, U. Martin, S. Martin, P. R. Scheller, A. Jahn, A. Weiß, The influence of martensitic transformation on mechanical properties of cast high alloyed CrMnNi-steel under various strain rates and temperatures, J. Phys.: Conf. Ser. 240 (2010).

DOI: 10.1088/1742-6596/240/1/012098

Google Scholar

[18] A. Weiß, H. Gutte, A. Jahn, P. R. Scheller, Nichtrostende Stähle mit TRIP/TWIP/SBIP-Effekt, Mat. -wiss. u. Werkstofftech. 40 (2009), 606–611.

DOI: 10.1002/mawe.200800361

Google Scholar

[19] L. Remy, A. Pineau, Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe-Mn-Cr-C system, Mater. Sci. Eng. 28 (1977), 99–107.

DOI: 10.1016/0025-5416(77)90093-3

Google Scholar

[20] A. Weidner, A. Müller, A. Weiß, H. Biermann, Ultrafine grained high-alloyed austenitic TRIP steel, Mat. Sci. Eng. A 571 (2013), 68–76.

DOI: 10.1016/j.msea.2013.02.008

Google Scholar