Gigacycle Fatigue Behaviour of Sintered WC-Co Hardmetals Investigated by Ultrasonic Resonance Testing

Article Preview

Abstract:

Hardmetals, manufactured from powders by pressing and sintering, are the most important tool materials in service today. In many applications, such as milling or percussion drilling, they are subjected to fatigue with considerable loading cycle numbers. In the present study, the fatigue behaviour of hardmetals in push-pull loading was investigated up to Nmax = 1010 using ultrasonic resonance fatigue testing. It showed that with all hardmetal grades investigated there is no fatigue “limit”, i.e. a horizontal branch of the S-N curve, but a consistent drop of the curve up to maximum N. Crack initiation was found to occur predominantly microstructure-controlled, as compared to defect controlled as typical for powder metallurgy tool steels.Keywords: gigacycle fatigue, WC-Co hardmetals, ultrasonic fatigue testing, fatigue limit

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

1016-1023

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] H.E. Exner, Physical and chemical nature of cemented carbides, Int Met Rev; 4; (1979) 149–73.

Google Scholar

[2] B. Roebuck, Terminology, Testing, Properties, Imaging and Models for Fine Grained Hardmetals; Int J Refract Met Hard Materials; 13; (1995); 265–79.

DOI: 10.1016/0263-4368(95)92673-8

Google Scholar

[3] M. Gee, A. Gant, B. Roebuck, K.P. Mingard, Mechanical properties of Hardmetals, in V.K. Sarin, L. Llanes & D. Mari (Eds. ), Comprehensive Hard Materials, Vol. 1: Hardmetals. UK: Elsevier Ltd. Oxford, (2014).

DOI: 10.1016/b978-0-08-096527-7.00012-x

Google Scholar

[4] B. Roebuck, E.A. Almond, Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals, International Materials Review, 33, (1988); 90–110.

DOI: 10.1179/imr.1988.33.1.90

Google Scholar

[5] A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Fracture and Strength of Hardmetals at Room Temperature, in V. K. Sarin, L. Llanes & D. Mari (Eds. ), Comprehensive Hard Materials, Vol. 1: Hardmetals. UK: Elsevier Ltd. Oxford, (2014).

DOI: 10.1016/b978-0-08-096527-7.00010-6

Google Scholar

[6] L. Llanes , M. Anglada, Y. Torres, Fatigue of cemented carbides, in V. K. Sarin, L. Llanes & D. Mari (Eds. ), Comprehensive Hard Materials, Vol. 1: Hardmetals. UK: Elsevier Ltd. Oxford, (2014).

DOI: 10.1016/b978-0-08-096527-7.00011-8

Google Scholar

[7] U. Schleinkofer, H.G. Sockel, K. Gorting, W. Heinrich; Fatigue of hard metals and cermets, Mater Sci Eng A; vol. 209; (1996); 313-317.

DOI: 10.1016/0921-5093(95)10106-3

Google Scholar

[8] A. Li, J. Zhao, D. Wang, X. Gao, H. Tang, Three-point bending fatigue behavior of WC–Co cemented carbides, Materials and design, 45, (2013); 271-278.

DOI: 10.1016/j.matdes.2012.08.075

Google Scholar

[9] T. Klunsner, S. Marsoner, R. Ebner, R. Pippan, J. Glatzle, A. Puschel, Effect of microstructure on fatigue properties of WC-Co hard metals, Procedia Eng , (2010); 2001-(2010).

DOI: 10.1016/j.proeng.2010.03.215

Google Scholar

[10] C. Sohar, Lifetime controlling defects in toolsteels, Springer Theses, Heidelberg-Dordrecht-London-NewYork, (2011).

Google Scholar

[11] W.P. Mason, Piezoelectric Crystals and their Application in Ultrasonics, van Nostrand, New York, (1950).

Google Scholar

[12] E.A. Neppiras, Technic and equipment for fatigue tesing at very high frequencies, Proc. ASTM, (1959); 691.

Google Scholar

[13] R. Stickler, B. Weiss, Review of the application of ultrasonic fatigue test methods for the determination of crack growth and threshold behavior of metallic materials, Ultrasonic Fatigue, AIME, Seven Springs USA, (1981); 135-171.

Google Scholar

[14] B. Weiss, R. Stickler, Determination of ΔKth of Mo-alloys with a 20 kHz method, Metall 34, (1980), 636.

Google Scholar

[15] A. Betzwar Kotas, B. Weiss, H. Danninger, J. Sanchez, K. Mingard, Fatigue Testing of Hardmetals in the Gigacycle Range, Proc. 18. Plansee Seminar Plansee SE, Reutte (2013).

DOI: 10.4028/www.scientific.net/msf.825-826.1016

Google Scholar

[16] A.J. Perry, J. A. Sue, P. J. Martin, Practical Measurement of the Residual-Stress in Coatings, Surf. Coat. Technol., 81, (1996); 17- 28.

Google Scholar

[17] T. Sailer, M. Herr, H. -G. Sockel, R. Schulte, H. Feld, L. J. Prakash, Microstructure and mechanical properties of ultrafine grained hardmetals, International J. of Refractory Metals & Hard Materials 19, (2001); 553-559.

DOI: 10.1016/s0263-4368(01)00041-5

Google Scholar

[18] C. Bathias, P.C. Paris, Gigacycle Fatigue in Mechanical Practice, CRC/ Marcel Dekker New York, (2005).

Google Scholar