Influence of Dendritic Morphology on the Calculation of Macrosegregation in Steel Ingot

Article Preview

Abstract:

The simulation of macrosegregation in a 2.45-ton steel ingot with the three-phase mixed columnar-equiaxed model was presented previously. The results showed an overestimation of the intensity of bottom negative segregation. The reason is due to the assumed globular morphology for the equiaxed crystal. Therefore, in this paper a simple approach is suggested to treat the dendritic morphology of equiaxed crystals. Three aspects are improved: the drag force between the moving equiaxed crystals and the surrounding melt, the mechanism of the columnar-to-equiaxed transition, the packing limit of the equiaxed crystals. The modified model is used to calculate the macrosegregation of the same ingot. It is found that the modified model predicts less severe negative segregation in the bottom equiaxed zone than the previous globular equiaxed model does, i.e. it agrees better to the experiment. The model considering simplified-dendritic morphology improves the calculation accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

121-126

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] J. Wang, P. Fu, H. Liu, D. Li, Y. Li, Shrinkage porosity criteria and optimized design of a 100-ton 30Cr2Ni4MoV forging ingot, Mater. Design 35 (2012) 446-456.

DOI: 10.1016/j.matdes.2011.09.056

Google Scholar

[2] P. Machovčák, A. Opler, Z. Carbol, A. Trefil, K. Merta, J. Zaoral, M. Tkadlečková, K. Michalek, Evaluation of chemical heterogeneity of a 90-ton forging ingot, Archives of Mater. Sci. Eng. 58 (2012) 22-27.

Google Scholar

[3] J. P. Gu, C. Beckermann, Simulation of convection and macrosegregation in a large steel ingo, Metall. Mater. Trans. A 30 (1999) 1357-1366.

DOI: 10.1007/s11661-999-0284-5

Google Scholar

[4] I. Vannier, H. Combeau, G. Lesoult, Numerical model for prediction of the final segregation pattern of bearing steel ingot, Mater. Sci. Eng. 173A (1993) 317-321.

DOI: 10.1016/0921-5093(93)90236-8

Google Scholar

[5] H. Combeau, A. Kumar, M. Zalonik, Modeling of equiaxed grain evolution and macrosegregations development in steel ingots, Transactions Indian Institute of Metals 62 (2009) 285-290.

DOI: 10.1007/s12666-009-0043-8

Google Scholar

[6] H. Combeau, M. Zaloznik, S. Hans, P. Richy, Prediction of macrosegregation in steel ingot: influence of the motion and the morphology of equiaxed grains, Metall. Mater. Trans. B 40B (2009) 289-304.

DOI: 10.1007/s11663-008-9178-y

Google Scholar

[7] A. Kumar, M. Zaloznik, and H. Combeau, Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: comparison with experiment, Int. J. Adv. Eng. Sci. Appl. Math. 2 (2010) 140-148.

DOI: 10.1007/s12572-011-0034-y

Google Scholar

[8] M. Wu, A. Ludwig, A three-phase model for mixed columnar equiaxed solidification, Metall. Mater. Trans. A 37A (2006) 1613-1631.

DOI: 10.1007/s11661-006-0104-0

Google Scholar

[9] M. Wu, A. Ludwig, Using a three-phase deterministic model for the columnar-to-equiaxed transition, Metall. Mater. Trans. A 38A (2007) 1465-1475.

DOI: 10.1007/s11661-007-9175-9

Google Scholar

[10] J. Li, M. Wu, A. Ludwig, A. Kharicha, Modelling macrosegregation in a 2. 45 ton steel ingot, in: A. Ludwig, M. Wu, A. Kharicha (Eds. ), MCWASP XIII, Schladming, Austria, 2012, IOP Conf. Series: Mater. Sci. Eng. 33 (2012) 012091.

DOI: 10.1088/1757-899x/33/1/012091

Google Scholar

[11] J. Li, M. Wu, A. Ludwig, A. Kharicha, Simulation of macrosegregation in a 2. 45-ton steel ingot using a three-phase mixed columnar-equiaxed model, Int. J. Heat Mass Transfer (2013) doi : 10. 1016/j. ijheatmasstransfer. 2013. 08. 079.

DOI: 10.1016/j.ijheatmasstransfer.2013.08.079

Google Scholar

[12] M. Wu, A. Ludwig, Modeling equiaxed solidification with melt convection and grain sedimentation-I: Model description, Acta Materialia, 57 (2009) 5621-5631.

DOI: 10.1016/j.actamat.2009.07.056

Google Scholar

[13] M. Wu, A. Fjeld, A. Ludwig, Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation-Part I: Model description, Comp. Mater. Sci., 50 (2010) 32-42.

DOI: 10.1016/j.commatsci.2010.07.005

Google Scholar

[14] J. Li, M. Wu, J. Hao, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model – Part I: Model description and verification, Comp. Mater. Sci., 55 (2012) 407-418.

DOI: 10.1016/j.commatsci.2011.12.037

Google Scholar

[15] J. Li, M. Wu, J. Hao, A. Ludwig, Simulation of channel segregation using a two-phase columnar solidification model – Part II: Mechanism and parameter study, Comp. Mater. Sci., 55 (2012) 419-429.

DOI: 10.1016/j.commatsci.2011.12.021

Google Scholar

[16] C. Wang, S. Ahuja, C. Beckermann, H. Groh, Multi- particle interfacial drag in equiaxed solidification, Metall. Mater. Trans. B, 26B (1995) 111-119.

DOI: 10.1007/bf02648984

Google Scholar

[17] Report on the heterogeneity of steel ingots, J. Iron Steel Inst. 113 (1926) 39-176.

Google Scholar

[18] E. Marburg, Accelerated solidification in ingot: its influence on ingot soundness, Journal of Metals, 5 (1953) 157-172.

DOI: 10.1007/bf03397468

Google Scholar