Microstructure and Mechanical Properties of Ultrafine-Grained Magnesium AZ91 Alloy

Article Preview

Abstract:

Microstructure, mechanical properties, cyclic plastic deformation behavior and fatigue strength of ultrafine-grained (UFG) magnesium alloy AZ91 processed by equal channel angular pressing (ECAP) were investigated. ECAP of originally cast alloy results in development of bimodal structure, improved yield stress, tensile strength and ductility when compared to the as-cast state. Endurance limit based on 107 cycles is also improved, however exhibits large scatter. Initiation of fatigue cracks takes place in regions of large grains in the bimodal structure, where the content of Mg17Al12 particles is low.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

384-389

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] B.L. Mordike, T. Ebert, Magnesium. Properties - applications - potential. Mat. Sci. Eng. A302 (2001) 37-45.

Google Scholar

[2] K.N. Braszczyńska-Malik, Precipitates of γ–Mg17Al12 Phase in AZ91 Alloy, in: http: /cdn. intechopen. com/pdfs/12741/InTech-Precipitates_of_gamma_mg17al12_phase_in_mg_al_ alloys. pdf.

DOI: 10.5772/13115

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[4] C.W. Chung, R.G. Ding, Y.L. Chiu, W. Gao, Effect of ECAP on microstructure and mechanical properties of cast AZ 91 magnesium alloy, J. Phys.: Conf. Ser. 241 (2010) 1-4.

DOI: 10.1088/1742-6596/241/1/012101

Google Scholar

[5] J. Gubicza, K. Máthis, Z. Hegedűs. G. Ribárik, A.L. Tóth, Inhomogeneous evolution of microstructure in AZ91 Mg-alloy during high temperature equal-channel angular pressing, J. Alloys Comp. 492 (2010) 166-172.

DOI: 10.1016/j.jallcom.2009.11.150

Google Scholar

[6] K. Máthis, J. Gubicza, N.H. Nam, Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, J. Alloy Comp. 394 (2005) 194-199.

DOI: 10.1016/j.jallcom.2004.10.050

Google Scholar

[7] B. Chen, D. -L. Lin, L. Jin, X. -Q. Zeng, Ch. Lu, Equal-channel angular pressing of magnesium alloy AZ91 and its effect on microstructure and mechanical properties, Mat. Sci. Eng. A. 483-484 (2008) 113-116.

DOI: 10.1016/j.msea.2006.10.199

Google Scholar

[8] Y. Estrin, A. Vinogradov: Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. International Journal of Fatigue 32 (2010) 898-907.

DOI: 10.1016/j.ijfatigue.2009.06.022

Google Scholar

[9] C.S. Chung, D. K. Chun, H.K. Kim: Fatigue properties of fine grained magnesium alloys after severe plastic deformation. J of Mech. Sci. and Technol. 19 (2005) 1441-1448.

DOI: 10.1007/bf03023903

Google Scholar

[10] B. Wolf, C. Fleck, D. Eifler, Characterization of the fatigue behaviour of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurement, Int. J. Fat. 26 (2004) 1357–1363.

DOI: 10.1016/j.ijfatigue.2004.04.005

Google Scholar

[11] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen: Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid. Acta Biomaterialia 6 (2010) 4605-4613.

DOI: 10.1016/j.actbio.2010.07.026

Google Scholar

[12] G. Murugan, K. Raghukandan, U.T.S. Pillai, B.C. Pai, K. Mahadevan: High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Materials and Design 30 (2009) 2636-2641.

DOI: 10.1016/j.matdes.2008.10.032

Google Scholar