HCl Assisted Growth of Thick 4H-SiC Epilayers for Bipolar Devices

Article Preview

Abstract:

The addition of hydrogen chloride (HCl) to our conventional CVD process allows for high growth rates up to 50 μm/h while maintaining the step-flow growth mode. Such epilayers exhibit quite low total concentrations of point defects less than 2 x 1013 cm-3. But, the HCl addition shows an ambivalent influence on the concentration of the lifetime killer defect Z1/2. For low growth rates, the Z1/2 concentration slightly decreases with increasing HCl addition. For higher growth rates, the Z1/2 concentration increases with increasing HCl addition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

210-213

Citation:

Online since:

February 2014

Export:

Price:

* - Corresponding Author

[1] H. Pedersen, S. Leone, O. Kordina, A. Henry, S. Nishizawa, Y. Koshka, E. Janzén; Chloride-Based CVD Growth of Silicon Carbide for Electronic Applications; Chemical Reviews 112 (2012) pp.2434-2453.

DOI: 10.1021/cr200257z

Google Scholar

[2] B. Kallinger, P. Berwian, J. Friedrich, B. Thomas; Step-controlled homoepitaxial growth of 4H–SiC on vicinal substrates; Journal of Crystal Growth 381 (2013) pp.127-133.

DOI: 10.1016/j.jcrysgro.2013.07.024

Google Scholar

[3] G. Chung, M. J. Loboda, M. F. MacMillan, J. Wan, D. M. Hansen; Carrier lifetime analysis by microwave photoconductivity decay (µ-PCD) for 4H-SiC epitaxial wafers; Materials Science Forum 556-557 (2007) 323-326.

DOI: 10.4028/www.scientific.net/msf.556-557.323

Google Scholar

[4] B. Kallinger, P. Berwian, J. Friedrich, M. Rommel, M. Azizi, C. Hecht, P. Friedrichs; Influence of epilayer thickness and structural defects on the minority carrier lifetime in 4H-SiC; Materials Science Forum 740-742 (2013) 633-636.

DOI: 10.4028/www.scientific.net/msf.740-742.633

Google Scholar

[5] S. G. Sridhara, R. P. Devaty, W. J. Choyke; Absorption coefficient of 4H silicon carbide from 3900 to 3250 A; Journal of Applied Physics 84 (1998) 2963-2964.

DOI: 10.1063/1.368403

Google Scholar

[6] Silicon vapor pressure extracted from NIST database.

Google Scholar

[7] A. N. Vorob'ev, A. E. Komissarov, A. S. Segal, Yu. N. Makarov, S. Yu. Karpov, A. I. Zhmakin, R. Rupp; Modeling analysis of gas phase nucleation in silicon carbide chemical vapor deposition; Materials Science and Engineering B61-62 (1999).

DOI: 10.1016/s0921-5107(98)00497-8

Google Scholar

[8] S. C. Hardy; The surface tension of liquid silicon; Journal of Crystal Growth 69 (1984) pp.456-460.

Google Scholar

[9] Y. Sato, T. Nishizuka, K. Hara, T. Yamamura, Y. Waseda; Density measurement of moltensilicon by a pycnometric method; International Journal of Thermophysics 21 (2000) pp.1463-1471.

DOI: 10.1023/a:1006661511770

Google Scholar

[10] T. Kimoto, K. Danno, J. Suda, Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation; phys. stat. sol. b 245 (2008) pp.1327-1336.

DOI: 10.1002/pssb.200844076

Google Scholar