Thermal Conductivity of Nanofluids

Article Preview

Abstract:

Enhanced thermal conductivity of nanofluids compared to that of the base fluid has received attention of many researchers in the last one decade. Experimental data on thermal conductivity of nanofluids using varied nanoparticles in the size range 10-100 nm have been reported. However, there is lot of variance in the data and needs critical analysis. Many models have been proposed by various research groups for predicting the thermal conductivity of nanofluids. Due to complexity of various parameters involved (size, % volume fraction, specific surface area and the type of nano particles, pH of nano fluid, thermal conductivity and viscosity of base fluid) no single model can be used for predicting the thermal conductivity of nanofluids. Inconsistent and conflicting results are reported on the enhanced thermal conductivity of nanofluids. Further, insufficient understanding and inconclusive mechanism behind enhanced thermal conductivity requires further attempt to work in this field. This article critically reviews the available literature on thermal conductivity of nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-137

Citation:

Online since:

May 2013

Export:

Price:

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.), Developments and applications of non-Newtonian flows, ASME Publ., New York, 1995, pp.99-105.

Google Scholar

[2] S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, John Wiley & Sons, Inc., New Jersey, 2008.

Google Scholar

[3] K.V. Wong, O.D. Leon, Applications of nanofluids: current and future, Advances in Mechanical Engineering, doi:10.1155/2010/519659 (2010) 1-11.

DOI: 10.1155/2010/519659

Google Scholar

[4] W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications, Journal of Nanomaterials, doi:10.1155/2012/435873 (2012) 1-17.

Google Scholar

[5] R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews 15 (2011) 1646-1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[6] I. Manna, Synthesis, characterization and application of nanofluid-an overview, Journal of the Indian Institute of Science 89:1 (2009) 21-33.

Google Scholar

[7] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA (1995).

Google Scholar

[8] A. Gavili, F. Zabihi, T.D. Isfahani, J. Sabbaghzadeh, The thermal conductivity of water base ferrofluids under magnetic field, Experimental Thermal and Fluid Science 41 (2012) 94-98.

DOI: 10.1016/j.expthermflusci.2012.03.016

Google Scholar

[9] E.V. Timofeeva, W. Yu, D.M. France, D. Singh, J. L. Routbort, Nanofluids for heat transfer: an engineering approach, Nanoscale Research Letters 6:182 (2011) 1-7.

DOI: 10.1186/1556-276x-6-182

Google Scholar

[10] A.K. Singh, Thermal Conductivity of Nanofluids, Defence Science Journal 58 (2008) 600-607.

Google Scholar

[11] G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: A review, Renewable and Sustainable Energy Reviews 14 (2010) 1913-1924.

DOI: 10.1016/j.rser.2010.03.017

Google Scholar

[12] J.K. Horrocks, E McLaughlin, Non-steady state measurements of thermal conductivities of liquids polyphenyls, Proc. R. Soc. Lond., 273(A) (1963) 259-74.

DOI: 10.1098/rspa.1963.0087

Google Scholar

[13] Y. Nagasaka, A. Nagashima, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, J. Phys. E: Sci. Instrum. 14 (1981) 1435-1440.

DOI: 10.1088/0022-3735/14/12/020

Google Scholar

[14] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences 47 (2008) 560-568.

DOI: 10.1016/j.ijthermalsci.2007.05.004

Google Scholar

[15] C.H. Li, W. Williams, J. Buongiorno, Lin-Wen Hu, G.P. Peterson, Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids, Journal of Heat Transfer, 130 (2008) 042407.

DOI: 10.1115/1.2789719

Google Scholar

[16] W. Yu, H. Xie, Y. Li, L. Chen, Experimental investigation on thermal conductivity and viscosity of aluminium nitride nanofluid, Particuology 9 (2011) 187-191.

DOI: 10.1016/j.partic.2010.05.014

Google Scholar

[17] M. Chandrasekar, S. Suresh, A.C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Experimental Thermal and Fluid Science 34 (2010) 210–216.

DOI: 10.1016/j.expthermflusci.2009.10.022

Google Scholar

[18] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai et al., Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys. 91 (2002) 4568-71.

DOI: 10.1063/1.1454184

Google Scholar

[19] S. Harish, K. Ishikawa, E. Einarsson, S. Aikawa, S. Chiashi, J. Shiomi, S. Maruyama, Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions, International Journal of Heat and Mass Transfer 55 (2012) 3885-3890.

DOI: 10.1016/j.ijheatmasstransfer.2012.03.001

Google Scholar

[20] C. Pang, J.Y. Jung, J.W. Lee, Y.T. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles, International Journal of Heat and Mass Transfer 55 (2012) 5597-5602.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.048

Google Scholar

[21] G. Paul, S. Sarkar, T. Pal, P.K. Das, I. Manna, Concentration and size dependence of nano-silver dispersed water based nanofluids, Journal of Colloid and Interface Science 371 (2012) 20-27.

DOI: 10.1016/j.jcis.2011.11.057

Google Scholar

[22] W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Thermochimica Acta 491 (2009) 92-96.

DOI: 10.1016/j.tca.2009.03.007

Google Scholar

[23] H. Xie, H. Lee, W. Youn, M. Choi, Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, J. Appl. Phys. 94 (2003) 4967-71.

DOI: 10.1063/1.1613374

Google Scholar

[24] S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Sciences 44 (2005) 367-373.

DOI: 10.1016/j.ijthermalsci.2004.12.005

Google Scholar

[25] M. Chopkar, P.K. Das, I. Manna, Synthesis and characterization of nanofluid for advanced heat transfer applications, Scripta Materialia 55 (2006) 549-552.

DOI: 10.1016/j.scriptamat.2006.05.030

Google Scholar

[26] T. Yiamsawasd, S. Wongwises, Measurement of the thermal conductivity of titania and alumina nanofluids, Thermochimica Acta doi:10.1016/j.tca.2012.06.026 (2010).

DOI: 10.1016/j.tca.2012.06.026

Google Scholar

[27] A. Turgut, I. Tavman , M. Chirtoc, H.P. Schuchmann, C. Sauter, S. Tavman, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, Int. J. Thermophys. 30 (2009) 1213-1226.

DOI: 10.1007/s10765-009-0594-2

Google Scholar

[28] L. Fedele, L. Colla, S. Bobbo, Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles, International Journal of Refrigeration 35 (2012) 1359-1366.

DOI: 10.1016/j.ijrefrig.2012.03.012

Google Scholar

[29] R. Karthik, R.H. Nagarajan, B. Raja, P. Damodharan, Thermal conductivity of CuO–DI water nanofluids using 3-ω measurement technique in a suspended micro-wire, Experimental Thermal and Fluid Science 40 (2012) 1-9.

DOI: 10.1016/j.expthermflusci.2012.01.006

Google Scholar

[30] Z. Meng, D. Han, D. Wu, H. Zhub, Q. Li, Thermal conductivities, rheological behaviors and photothermal properties of ethylene glycol-based nanofluids containing carbon black nanoparticles, Procedia Engineering 36 ( 2012 ) 521-527.

DOI: 10.1016/j.proeng.2012.03.076

Google Scholar

[31] W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Experimental Thermal and Fluid Science 33 (2009) 706-714.

DOI: 10.1016/j.expthermflusci.2009.01.005

Google Scholar

[32] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125 (2003) 567-574.

DOI: 10.1115/1.1571080

Google Scholar

[33] H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George et al., Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett. 83 (2003) 2931-33.

DOI: 10.1063/1.1602578

Google Scholar

[34] C.H. Li, G.P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, J. Appl. Phys. 101 (2007) 044312.

DOI: 10.1063/1.2436472

Google Scholar

[35] G. Colangelo, E. Favale, A. de Risi, D. Laforgia, Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications, Applied Energy 97 (2012) 828-833.

DOI: 10.1016/j.apenergy.2011.11.026

Google Scholar

[36] M. Kole, T.K. Dey, Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids, Thermochimica Acta 535 (2012) 58-65.

DOI: 10.1016/j.tca.2012.02.016

Google Scholar

[37] C.A.N. de Castro, S.M.S. Murshed, M.J.V. Lourenço, F.J.V. Santos, M.L.M. Lopes, J.M.P. França, Enhanced thermal conductivity and specific heat capacity of carbon nanotubes Ionanofluids, International Journal of Thermal Sciences, in press (2012) 1-6.

DOI: 10.1016/j.ijthermalsci.2012.03.010

Google Scholar

[38] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid, Journal of Materials Science Letters 21 (2002) 1469-1471.

Google Scholar

[39] E.V. Timofeeva, W. Yu, D.M. France, D. Singh, J.L. Routbort, Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids, J. Appl. Phys. 109 (2011) 014914.

DOI: 10.1063/1.3524274

Google Scholar

[40] R.S. Khedkar, S.S. Sonawane , K.L. Wasewar, Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids, International Communications in Heat and Mass Transfer 39 (2012) 665-669.

DOI: 10.1016/j.icheatmasstransfer.2012.03.012

Google Scholar

[41] T.H. Tsai, L.S. Kuo, P.H. Chen, and C.T. Yang, Effect of viscosity of base fluid on thermal conductivity of nanofluids, Appl. Phys. Lett. 93 (2008) 233121.

DOI: 10.1063/1.3046732

Google Scholar

[42] Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physics 6 (2006) 1068-1071.

DOI: 10.1016/j.cap.2005.07.021

Google Scholar

[43] M.P. Beck, Y. Yuan, P. Warrier, A.S. Teja, The effect of particle size on the thermal conductivity of alumina nanofluids, J. Nanopart. Res. 11(2009) 1129-1136.

DOI: 10.1007/s11051-008-9500-2

Google Scholar

[44] S. Ozerinc¸ S. Kakac¸ A.G. Yazıcıoglu, Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluid Nanofluid, 8 (2010) 145-170.

Google Scholar

[45] R. Prasher, P.E. Phelan, P. Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano Lett. 6 (2006) 1529-1534.

DOI: 10.1021/nl060992s

Google Scholar

[46] H.E. Patel, T. Sundararajan, S.K. Das, A cell model approach for thermal conductivity of nanofluids, J. Nanopart. Res. 10 (2008) 87.

DOI: 10.1007/s11051-007-9236-4

Google Scholar

[47] X. Wang, D. Zhu, S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett. 470 (2009) 107-111.

DOI: 10.1016/j.cplett.2009.01.035

Google Scholar

[48] S.M.S. Murshed, K.C. Leong, C. Yang, Characterization of electrokinetic properties of nanofluids, J. Nanosci. Nanotechnol. 8 (2008) 5966-5971.

DOI: 10.1166/jnn.2008.18369

Google Scholar

[49] T. Yousefi, E. Shojaeizadeh, F. Veysi, S. Zinadini, An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector, Solar Energy 86 (2012) 771-779.

DOI: 10.1016/j.solener.2011.12.003

Google Scholar

[50] A. Nasiri, M.S. Niasar, A.M. Rashidi, R. Khodafarin, Effect of CNT structures on thermal conductivity and stability of nanofluid, International Journal of Heat and Mass Transfer 55 (2012) 1529-1535.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.004

Google Scholar

[51] E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys. 106 (2009) 014304.

DOI: 10.1063/1.3155999

Google Scholar

[52] P.C.M. Kumar, J. Kumar , S. Sendhilnathan, Theoretical model to determine the thermal conductivity of nanofluids, International Journal of Engineering Science and Technology 2 ( 2010) 2846-2852.

Google Scholar

[53] K.V. Wong, M.J. Castillo, Heat transfer mechanisms and clustering in nanofluids, Advances in Mechanical Engineering doi:10.1155/2010/795478 (2010).

DOI: 10.1155/2010/795478

Google Scholar

[54] J.C. Maxwell, A Treatise on Electricity and Magnetism, Macmillan and Co.,Clarendon Press, Oxford, 1873.

Google Scholar

[55] R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, I. & E.C. Fundamentals 1 (1962) 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[56] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[57] X.Q. Wang, A.S. Mujumdar, A review on nanofluids-part I: theoretical and numerical investigations, Brazilian Journal of Chemical Engineering 25 (2008) 613-630.

DOI: 10.1590/s0104-66322008000400001

Google Scholar

[58] D.J. Jeffrey, Conduction through a random suspension of spheres, Proc. Roy. Soc., Lond., A335 (1973) 355-367.

Google Scholar

[59] R.H. Davis, The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophys. 7 (1986) 609-620.

DOI: 10.1007/bf00502394

Google Scholar

[60] S.Y.Lu, H.C. Lin, Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, J. Appl. Phys. 79 (1996) 6761.

DOI: 10.1063/1.361498

Google Scholar

[61] R.T. Bonnecaze, J.F. Brady, Proc. R. Soc. London, Ser. A 430 (1990) 285.

Google Scholar

[62] R.T. Bonnecaze, J.F. Brady, Proc. R. Soc. London, Ser. A 432 (1991) 445.

Google Scholar

[63] Q.Z. Xue, Model for effective thermal conductivity of nanofluids, Physics Letters A 307 (2003) 313–317.

DOI: 10.1016/s0375-9601(02)01728-0

Google Scholar

[64] C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters 6 (2011) 229.

DOI: 10.1186/1556-276x-6-229

Google Scholar

[65] K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, International Journal of Heat and Mass Transfer 54 (2011) 4410-4428.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.048

Google Scholar

[66] S. P. Jang, S.U S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett. 84 (2004) 4316.

DOI: 10.1063/1.1756684

Google Scholar

[67] J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, Journal of Nanoparticle Research 6 (2004) 577-588.

DOI: 10.1007/s11051-004-3170-5

Google Scholar

[68] J. Xu, B. Yu, M. Zou, P. Xu, A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles, J. Phys. D. Appl. Phys. 39 (2006) 4486-4490.

DOI: 10.1088/0022-3727/39/20/028

Google Scholar

[69] Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conductivity of nanofluids, thermodynamics, J. American Inst. of Chem. Eng. 49 (2003) 1038-1043.

DOI: 10.1002/aic.690490420

Google Scholar

[70] R. Prasher, P. Bhattacharya, P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett. 94 (2005) 1-4.

DOI: 10.1103/physrevlett.94.025901

Google Scholar

[71] M.E. Meibodi, M.V. Sefti, A.M. Rashidi, A. Amrollahi, M. Tabasi, H.S. Kalal, Simple model for thermal conductivity of nanofluids using resistance model approach, International Communications in Heat and Mass Transfer 37 (2010) 555-559.

DOI: 10.1016/j.icheatmasstransfer.2009.12.010

Google Scholar

[72] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Applied Thermal Engineering 29 (2009) 2477-2483.

DOI: 10.1016/j.applthermaleng.2008.12.018

Google Scholar

[73] W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transf. 51 (2008) 1431-1438.

DOI: 10.1016/j.ijheatmasstransfer.2007.10.017

Google Scholar

[74] B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer 46 (2003) 2665-2672.

DOI: 10.1016/s0017-9310(03)00016-4

Google Scholar

[75] W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res. 5 (2003) 167-171.

DOI: 10.1023/a:1024438603801

Google Scholar

[76] W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model, J. Nanopart. Res. 6 (2004) 355-361.

DOI: 10.1007/s11051-004-2601-7

Google Scholar

[77] H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, International Journal of Heat and Mass Transfer 48 (2005) 2926-2932.

DOI: 10.1016/j.ijheatmasstransfer.2004.10.040

Google Scholar

[78] Q. Xue, W.M. Xu, A model of thermal conductivity of nanofluids with interfacial shells, Materials Chemistry and Physics 90 (2005) 298-301.

DOI: 10.1016/j.matchemphys.2004.05.029

Google Scholar

[79] A.R. Moghadassi, S.M. Hosseini, D. Henneke, A. Elkamel, A model of nanofluids effective thermal conductivity based on dimensionless groups, Journal of Thermal Analysis and Calorimetry 96 (2009) 81-84.

DOI: 10.1007/s10973-008-9843-z

Google Scholar

[80] C.H. Li, W. Williams, J. Buongiorno, L.W. Hu, G.P. Peterson, Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids, J. Heat Transf. 130 (2008) 042407.

DOI: 10.1115/1.2789719

Google Scholar

[81] S. Nabi, E. Shirani, Simultaneous effects of brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids, IJST, Transactions of Mechanical Engineering 36 (2012) 53-68.

Google Scholar

[82] V. Trisaksri, S. Wongwises, Critical review of heat transfer characteristics of nanofluids, Renewable and Sustainable Energy Reviews 11 (2007) 512-523.

DOI: 10.1016/j.rser.2005.01.010

Google Scholar

[83] S.A. Putnam, D.G. Cahill, P.V. Braun, Z. Ge, R.G. Shimmin, Thermal conductivity of nanoparticle suspensions, Journal of Applied Physics 99 (2006) 084308/1–084308/6.

DOI: 10.1063/1.2189933

Google Scholar

[84] S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids- A critical review, Applied Thermal Engineering 28 (2008) 2109-2125.

DOI: 10.1016/j.applthermaleng.2008.01.005

Google Scholar

[85] Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu, Thermal and rheological properties of carbon nanotube-in-oil dispersions, Journal of Applied Physics 99 (2006) 114307.

DOI: 10.1063/1.2193161

Google Scholar

[86] W. Yu, D.M. France , J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering 29 (2008) 432-460.

DOI: 10.1080/01457630701850851

Google Scholar

[87] Z. Haddad, E.A. Nada, H.F. Oztop, A. Mataoui, Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?, International Journal of Thermal Sciences 57 (2012) 152-162.

DOI: 10.1016/j.ijthermalsci.2012.01.016

Google Scholar

[88] D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Model for heat conduction in nanofluids, Physical Review Letters 93 (2004) 144301.

DOI: 10.1103/physrevlett.93.144301

Google Scholar

[89] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transf. 45 (2002) 855-863.

DOI: 10.1016/s0017-9310(01)00175-2

Google Scholar

[90] P. Keblinski, J.A. Eastman, D.G. Cahill, Nano fluids for thermal transport, materialtoday, (2005) 36-44.

Google Scholar

[91] H.R. Seyf , B. Nikaaein, Analysis of Brownian motion and particle size effects on the thermal behaviour and cooling performance of microchannel heat sinks, International Journal of Thermal Sciences 58 (2012) 36-44.

DOI: 10.1016/j.ijthermalsci.2012.02.022

Google Scholar

[92] J.J. Wang, R.T. Zheng, J.W. Gao, G. Chen, Heat conduction mechanisms in nanofluids and Suspensions, Nano Today 7 (2012) 124-136.

DOI: 10.1016/j.nantod.2012.02.007

Google Scholar

[93] C. Nie, W.H. Marlow, Y.A. Hassan, Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids, International Journal of Heat and Mass Transfer 51 (2008) 1342-1348.

DOI: 10.1016/j.ijheatmasstransfer.2007.11.034

Google Scholar

[94] C.H. Li, G.P. Peterson, Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids), Int. J. of Heat and Mass Transfer 50 (2007) 4668-4677.

DOI: 10.1016/j.ijheatmasstransfer.2007.03.015

Google Scholar

[95] J. Koo, C. Kleinstreuer, International Communications in Heat and Mass Transfer 32 (2005) 1111-1118.

Google Scholar

[96] R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, P. Keblinski, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett. 89 (2006) 143119.

DOI: 10.1063/1.2360229

Google Scholar

[97] T. Thajudeen, C.J. Hogan Jr., First passage calculation of the conductivity of particle aggregate-laden suspensions and composites, Powder Technology 218 (2012) 31-39.

DOI: 10.1016/j.powtec.2011.11.028

Google Scholar

[98] J. Hong, D. Kim, Effects of aggregation on the thermal conductivity of alumina/water nanofluids, Thermochimica Acta 542 (2012) 28-32.

DOI: 10.1016/j.tca.2011.12.019

Google Scholar

[99] D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.

DOI: 10.1016/j.partic.2009.01.007

Google Scholar

[100] J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, Thermal transport in nanofluids, Annual Review of Materials Research 34 (2004) 219–246.

DOI: 10.1146/annurev.matsci.34.052803.090621

Google Scholar