EBSD Analysis of Deformed and Partially Recrystallized Microstructures in ECAE-Processed Copper

Article Preview

Abstract:

The deformed microstructure and recrystallization behavior of copper samples processed using equal channel angular extrusion (ECAE) have been investigated. The heavily deformed microstructure was found to be non-uniform through the sample thickness and to vary in a manner consistent with the non-uniform distribution of strain imposed by processing. The through-thickness heterogeneity of the deformed microstructure resulted in a different extent of recrystallization in different layers during annealing. Recrystallized grains were also observed in samples that were not annealed, but stored at room temperature, which indicates that the deformed microstructure of ECAE-processed pure copper is unstable even at room temperature. In each sample, recrystallization was found to initiate in regions containing predominantly large misorientations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

825-830

Citation:

Online since:

April 2012

Export:

Price:

[1] N.A. Akhmadeev, N.P. Kobelev, R.R. Mulyukov, Y.M. Soifer and R.Z. Valiev: Acta Metall. Mater., Vol. 41 (1993), p.1041.

Google Scholar

[2] S. Ferasse, V.M. Segal, K.T. Hartwig and R.E. Goforth: Metall. Mater. Trans A, Vol. 28A (1997), p.1047.

Google Scholar

[3] J.R. Bowen, A. Gholinia, S.M. Roberts and P.B. Prangnell: Mater. Sci. Eng. A, Vol. 287 (2000), p.87.

Google Scholar

[4] O.V. Mishin and J.R. Bowen: Metall. Mater. Trans. A, Vol. 40A (2009), p.1684.

Google Scholar

[5] O.V. Mishin, D. Juul Jensen and N. Hansen: Mater. Sci. Eng. A, Vol. 342 (2003), p.320.

Google Scholar

[6] O.V. Mishin and A. Godfrey: Metall. Mater. Trans A, Vol. 39A (2008), p.2923.

Google Scholar

[7] O.V. Mishin, A. Godfrey and D. Juul Jensen, in: Electron Backscatter Diffraction in Materials Science, edited by A.J. Schwartz et al., Springer Science+Business Media, p.263, DOI: 10. 1007/978-0-387-88136-2_19.

Google Scholar

[8] O.V. Mishin, J.R. Bowen and S. Lathabai: Scripta Mater., Vol. 63 (2010), p.20.

Google Scholar

[9] S. Komura, Z. Horita, M. Nemoto and T.G. Langdon: J. Mater. Res., Vol. 14 (1999), p.4044.

Google Scholar

[10] Y. Estrin, N.V. Isaev, S.V. Lubenets, S.V. Malykhin, A.T. Pugachov, V.V. Pustovalov, E.N. Reshetnyak, V.S. Fomenko, L.S. Fomenko, S.E. Shumilin, M. Janecek and R.J. Hellmig: Acta Mater., Vol. 54 (2006), p.5581.

DOI: 10.1016/j.actamat.2006.07.036

Google Scholar

[11] A.L. Etter, T. Baudin, C. Rey and R. Penelle: Mater. Charact., Vol. 56 (2006), p.19.

Google Scholar

[12] J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedus and T.G. Langdon: Mater. Sci. Eng. A, Vol. 527 (2010), p.752.

Google Scholar

[13] J. Schamp, B. Verlinden and J. Van Humbeeck: Scripta Mater., Vol. 34 (1996), p.1667.

Google Scholar

[14] T. Ichikawa, S. Aoyama, T. Takahashi and H. Nagayama: Hitachi Cable Rev., Vol. 19 (2000), p.47.

Google Scholar