Nano-Grained Structure Induced by Mechanical Twinning during Multi-Directional Forging and the Mechanical Properties

Article Preview

Abstract:

A bulky SUS316 austenitic stainless steel (SUS316) was multi-directionally forged (MDFed) at 77 K and 300 K up to a cumulative strain of = 6 at maximum. With increasing cumulative strain, the grains were subdivided by mechanical twinning and martensitic transformation. Especially, mechanical twins accelerated grain fragmentation by subdivision of the initial grains and by intersection of the previously formed twins during MDF. The intersection of twins caused finally evolution of packet grains, which were composed of lamellar structured twins. The packet size and the lamellar twin spacing decreased down to 35 nm and 15 nm by MDF to  = 6 at 77 K. The average grain size achieved was estimated to be about 10 nm. Twinning appeared more frequently and uniformly at 77 K than at 300 K. Tensile test at 300 K revealed ultimate tensile strength of 2.1 GPa and fracture strain of about 0.2. The fracture strain, however, appeared to be constant over ∑Δε = 2.4 independent of cumulative strain. The observed excellent balance of strength and ductility of the nano-grained SUS316 is discussed in relation with the effects of twins on grain fragmentation and mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

577-593

Citation:

Online since:

November 2009

Export:

Price:

[1] R. A. Valiev: Mater. Sci. Forum Vols. 426-432 (2003), p.237.

Google Scholar

[2] M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon: Mater. Sci. Eng. A Vol. 324 (2002), p.82.

Google Scholar

[3] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. Vol. 46 (1998), p.3317.

Google Scholar

[4] N. Kamikawa, N. Tsuji, X. Huang and N. Hansen: Acta Mater. Vol. 54 (2006), p.3055.

Google Scholar

[5] T. Sakai, H. Miura, K. Usui and T. Koba: Proc. of the 25th Risoe Inter. Symp. on Mater. Sci. Evolution of Deformation Microstructures in 3D, Risoe, Denmark, (2004), p.509.

Google Scholar

[6] X. Yang, M. Sanada, H. Miura and T. Sakai: Mater. Sci. Forum Vol. 488-489 (2005), p.223.

Google Scholar

[7] A. Belyakov, K. Tsuzaki, H. Miura, T. Sakai: Acta Mater. Vol. 51 (2003), p.847.

Google Scholar

[8] H. Miura, X. Yang, J. Xing and T. Sakai: Proc. of 1st Asian Symp. on Magnesium Alloys, Jeju, Korea, (2005), p.77.

Google Scholar

[9] A. Takayama, X. Yang, H. Miura and T. Sakai: Mater. Sci. Eng. A. Vol. 478 (2008), p.221.

Google Scholar

[10] L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu and S. Suresh, Acta Mater., Vol. 53 (2005), p.2169.

Google Scholar

[11] S.D. Prokoshkin, I. Yu. Khmelevskaya, S.V. Dobatkin, E.V. Tatyanin and I.B. Trubitsyna: Mater. Sci. Forum Vols. 503-504 (2006), p.481.

DOI: 10.4028/www.scientific.net/msf.503-504.481

Google Scholar

[12] Y. Nakao, H. Miura, T. Sakai and M. Wada: J. Japan Inst. Metals, Vol. 70 (2006), p.434.

Google Scholar

[13] H. Miura, Y. Nakao and T. Sakai, Mater. Trans. Vol. 48 (2007), p.2539.

Google Scholar

[14] N. Narita and J. Takamura: F.R.N. Nabaro (Ed), Dislocations in Solids, Vol. 9, Elsevier Science Publishers B. V, (1992), p.135.

Google Scholar

[15] F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, U.K., (2004).

Google Scholar

[16] Y. Nakao, H. Miura and T. Sakai: J. Japan Inst. Metals Vol. 72 (2008), p.397.

Google Scholar

[17] H. Miura, T. Yoshida, T. Sakai, M. Kato and T. Mori: J. Japan Inst. Metals Vol. 57 (1993), p.479.

Google Scholar

[18] T. Morikawa, T. Moronaga and K. Higashida: Testu-to-Hagané Vol. 91 (2005), p.46.

Google Scholar

[19] R.E. Schramm and R.P. Reed, Metall. Trans. A, Vol. 6A (1975), p.1345.

Google Scholar

[20] J. Xing, X. Yang, H. Miura and T. Sakai: J. JSTP Vol. 48 (2007), p.407.

Google Scholar

[21] A. Belyakov, T. Sakai, H. Miura and K. Tsuzaki: Philos. Mag. A Vol. 81 (2001), p.2629.

Google Scholar

[22] H. Miura, Y. Yoshida and T. Sakai : Problems of Mater. Sci. Vol. 52 (2007) p.24.

Google Scholar

[23] H. Miura and T. Sakai: Proc. of ISUGUS2, (Geelong, Australia), CDROM, Inst. of Materials Engineering Australia Limited, (2004).

Google Scholar

[24] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scri. Mater. Vol. 47 (2002), p.893.

Google Scholar

[25] Y. Fukuda, K. Oh-ishi, Z. Horita and T. G. Langdon: Acta Mater. Vol. 50 (2002), p.1359.

Google Scholar

[26] D.G. Brandon, B. Ralph and S. Ranganathan: Acta Mater. Vol. 12 (1964), p.813.

Google Scholar

[27] Y. Nakao and H. Miura: in preparation.

Google Scholar

[28] R. Monzen, Y. Sumi, K. Kitagawa and T. Mori: Acta metal. mater. Vol. 38 (1990), p.2553.

Google Scholar