Microtexture Development and Flow Stress Saturation during Triaxial Forging of an Al-3Mg-Sc(Zr) Alloy

Article Preview

Abstract:

An Al-3%Mg-0.25%Sc-0.12%Zr alloy was deformed by triaxial forging at 20-400°C up to strains of about 3. A study of its textural evolution reveals the tendency towards three symmetrical variants of a <110><1 10 ><001> component. This experimental observation is supported by a 3D spatially resolved crystal plasticity analysis. Samples strained at room temperature undergo grain fragmentation in the form of fine substructures and relatively weak textures. Conversely, at 300°C and above, more homogeneous intergranular deformation and rotations give rise to stronger textures. This eventually encourages grain coalescence and thus the development of interpenetrating “orientation chains”, creating a new type of microstructure. The influence of this texture development on the specific work hardening behaviour is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Pages:

793-800

Citation:

Online since:

May 2007

Export:

Price:

[1] P.E. Armstrong, J.E. Hockett and O.D. Sherby, J. Mech. and Physics of Solids, 30, (1982).

Google Scholar

[2] A. Belyakov, T. Sakai, H. Miura and K. Tsuzaki, Phil. Mag, A 81, pp.2629-2643, (2001).

Google Scholar

[3] A. Belyakov, T. Sakai, H. Miura, R. Kaibeyshev and K. Tsuzaki, Acta Materialia, 50, pp.1547-1557, (2002).

Google Scholar

[4] J.H. Driver, D. Juul Jensen and N. Hansen, Acta Metall. Mater., 42, pp.3105-3114, (1994).

Google Scholar

[5] S. Ringeval, D. Piot, C. Desrayaud and J.H. Driver, Acta Materialia, 54, 11, pp.3095-3105, (2006).

DOI: 10.1016/j.actamat.2006.02.047

Google Scholar

[6] Ch. Desrayaud, S. Ringeval, S. Girard and J.H. Driver, J. Mater Processing Technology, pp.152-158, V172 (2006).

Google Scholar

[7] W. Robert, D. Piot and J.H. Driver, Scripta Materialia, 50, pp.1215-1219, (2004).

Google Scholar

[8] M.J. Jones and F.J. Humphreys, Acta Materialia, 51, 8, pp.2149-2159, (2003).

Google Scholar

[9] A. Gholinia, F.J. Humphreys and P.B. Prangnell, Acta Materialia, 50, 18, pp.4461-4476, (2002).

DOI: 10.1016/s1359-6454(02)00253-7

Google Scholar

[10] Ringeval S and Driver J.H., Proc. ICAA10 to be published, (2006).

Google Scholar

[11] N. Hansen, Metall. Mater. Trans., 32A, pp.2917-2935, (2001).

Google Scholar

[12] S. Ringeval and J.H. Driver (2006), Proc. ICAA10, accepted, to be published (2006).

Google Scholar

[13] D.A. Hughes, Acta Metall. Mater., 41, pp.1421-1430, (1993).

Google Scholar

[14] E. Nes, Prog. Mater. Sci., 41, pp.129-193, (1998).

Google Scholar

[15] H.J. McQueen, Metall. Mater. Trans., 33A, pp.345-362, (2002).

Google Scholar

[16] J.H. Driver, M.C. Theyssier and Cl. Maurice, Mater. Sci. Technol., 12, pp.854-858, (1996).

Google Scholar