Development of Aluminium Foam Processes and Products

Article Preview

Abstract:

Aluminum foams offer an attractive combination of attributes as engineering materials, such as low density, high rigidity, high energy absorption, and fire resistance. To date, however, metallic foams have achieved only a fraction of the market acceptance enjoyed by polymeric foams, owing largely to size limitations, poor uniformity and, above all, high unit costs. Methods utilizing casting (non-powder) metallurgy, while seemingly offering the potential of economies of scale, often suffer quality issues such as large cell sizes, poor uniformity and insufficient structural integrity. Many of these problems are associated with the rheology of the molten metal itself. While prior efforts to modify melt rheology through extrinsic additions of ceramic particles have been shown to be effective, the costly materials and processing paths used to create such suspensions have limited the economic attractiveness of such products. In this paper, aluminum foams produced through an alternative processing method will be described. The physical and mechanical properties in these fine (< 1 mm) celled aluminum foams will be related to their cellular structure and the properties of the aluminum alloy matrix from which they are produced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 519-521)

Pages:

1193-1200

Citation:

Online since:

July 2006

Export:

Price:

[1] M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley: Metals Foams: A Design Guide (Butterworth-Heinemann, USA 2000).

Google Scholar

[2] E.M.A. Maine, M.F. Ashby: Materials and Design Vol. 23 (2002), p.307.

Google Scholar

[3] E.M.A. Maine, M.F. Ashby: Materials and Design Vol. 23 (2002), p.297.

Google Scholar

[4] K. Stobener, M. Weigend and G. Rausch: Cellular Metals: Manufacture, Properties and Applications, Verlag MIT Publishing, (2003), p.161.

Google Scholar

[5] I. Duarte and J. Banhart: Acta Mat. Vol 48 (2000), p.2349.

Google Scholar

[6] D. Kupp, D. Claar and K. Flemming: Processing and Properties of Lightweight Cellular Metals and Structures, TMS (2002), p.61.

Google Scholar

[7] S-H. Park, Y-S. Um, C-H Kum, and B-Y. Hur: Colloids and Surfaces A vol 263 (2005), p.280.

Google Scholar

[8] D. Leitlmeier, H. P. Degischer and H.J. Flankl: Adv. Engineering Materials Vol. 4 No. 10 (2002), p.735.

Google Scholar

[9] U. Ramamurty, A. Paul: Acta Mat. Vol. 52 (2004), p.869.

Google Scholar

[10] A.E. Markaki and T.W. Clyne: Acta Mat. Vol 49 (2001), p.1677.

Google Scholar

[11] T.G. Nieh, K. Higashi, J. Wadsworth: Mat. Sci. and Engineering A283 (2000), p.105.

Google Scholar

[12] C.C. Yang and H. Nakae: J. of Mat. Processing and Tech., Vol 141 (2003), p.202.

Google Scholar

[13] V. Gergely and T.W. Clyne: Acta Mat. Vol 52 (2004), pp.3047-3058.

Google Scholar

[14] G. Kaptay: Cellular Metals: Manufacture, Properties and Applications, Verlag MIT Publishing, (2003), p.107.

Google Scholar

[15] J. Baumeister, H. Schrader: US Patent 5, 151, 246, (1992).

Google Scholar

[16] N. Babcsan, D. Leitlmeier and J. Banhart: Colloids and Surfaces A Vol. 261 (2005), p.123.

Google Scholar

[17] D. Leitlmeier, H.P. Degischer and H.J. Flankl: Adv. Eng. Mater. Vol. 4(2002), p.735.

Google Scholar

[18] I. Jin, L.D. Kenny and H. Sang: US Patent 5, 112, 697, (1992).

Google Scholar

[19] L. Froyen, P. Lust, L. Delaney: Adv. Colloid Sci., Vol. 4 (1993), p.297.

Google Scholar

[20] B. Matijasevic, J. Banhart: Scripta Mat. Vol. 54 (2006), pp.503-508.

Google Scholar

[21] C-C. Yang, S-C. Chueh, K-C. Su and T-H. Chiou: US Patent 5, 632, 319, (1997).

Google Scholar

[22] W. Knott: US Patent 5, 972, 285, (1999).

Google Scholar

[23] L.J. Gibson, M.F. Ashby: Cellular Solids: Structures and Properties - Second Edition (Press Syndicate of the University of Cambridge, UK (1997), p.189.

Google Scholar

[24] L.J. Gibson, M.F. Ashby: Cellular Solids: Structures and Properties - Second Edition (Press Syndicate of the University of Cambridge, UK (1997), p.207.

Google Scholar

[25] K.Y.G. McCullough, M.A. Fleck and M.F. Ashby: Acta Mat. Vol. 47 (1999), p.2331.

Google Scholar

[26] V. Gergely D.C. Curran and T.W. Clyne: Processing and Properties of Lightweight Cellular Metals and Structures (2002), p.97.

Google Scholar

[27] V. Gergely D.C. Curran and T.W. Clyne: Composite Sci. and Tech, Vol. 63 (2003), p.2301.

Google Scholar

[28] T. Nakamura, S.V. Gnyloskurencko, K. Sakamoto, A.V. Byakova and R. Ishikawa: Material Trans., Vol. 43 (2002), p.1191.

Google Scholar

[29] N. Babcsan, D. Leitlmeier, H.P. Degischer and J. Banhart: Adv. Engineering Materials Vol. 6 No. 6 (2004), p.421.

Google Scholar

[30] L. Salvo, P. Belestin, T. Douillard, E. Maire, M. Jacquesson, and E. Boller: Cellular Metals: Manufacture, Properties and Applications, Verlag MIT Publishing, (2003), p.319.

Google Scholar

[31] A. Fazekas, L.P. Lefebvre, M. Gauthier, R. Dendievel and L. Salvo: Cellular Metals: Manufacture, Properties and Applications, Verlag MIT Publishing, (2003), p.307.

Google Scholar

[32] Micro Photonics Inc.; microphotonics. com, Allentown Pennsylvania.

Google Scholar

[33] M. Hahn, M. Vogel, M. Pompesius-Kempa and G. Delling: Bone Vol. 13 (1992), p.327.

DOI: 10.1016/8756-3282(92)90078-b

Google Scholar