Effect of Strain on Deformation Microstructure and Subsequent Annealing Behavior of IF Steel Heavily Deformed by ARB Process

Article Preview

Abstract:

Ultra low-carbon interstitial free (IF) steel having ferrite (b.c.c.) single phase was deformed to various equivalent strains ranging from 0.8 to 5.6 by the accumulative roll bonding (ARB) process at 500°C. The microstructure and crystallographic feature of the deformed specimens were characterized mainly by FE-SEM/EBSD analysis. Grain subdivision during the plastic deformation up to very high strain was clarified quantitatively. After heavy deformation above 4.0 of strain, the specimens showed the lamellar boundary structure uniformly, in which the mean spacing of the lamellar boundaries was about 200nm and more than 80% of the boundaries were high-angle ones. Annealing behavior of the ARB processed IF steel strongly depended on the strain. The specimens deformed to medium strains exhibited discontinuous recrystallization characterized by nucleation and growth, while the specimens deformed above strain of 4.0 showed continuous recrystallization. The recrystallization behaviors are discussed on the basis of the microstructural and crystallographic parameters quantitatively measured in the as-deformed samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

341-348

Citation:

Online since:

October 2004

Export:

Price:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] N. Tsuji, Y. Saito, S.H. Lee and Y. Minamino: Adv. Eng. Mater. Vol. 5 (2003), p.338.

Google Scholar

[3] Y. Ito, N. Tsuji, Y. Saito, H. Utsunomiya and T. Sakai: J. Jpn. Inst. Metals Vol. 64 (2000), p.429.

Google Scholar

[4] A. Gholinia, P.B. Prangnell and M.V. Markushev: Acta Mater. Vol. 48 (2000), p.1115.

Google Scholar

[5] N. Tsuji, Y. Ito, H. Nakashima, F. Yoshida and Y. Minamino: Mater. Sci. Forum Vol. 396-402 (2002), p.423.

Google Scholar

[6] A. Gholinia, F.J. Humphreys and P.B. Prangnell: Acta Mater. Vol. 50 (2002), p.4461.

Google Scholar

[7] X. Huang, N. Tsuji, N. Hansen and Y. Minamino: Mater. Sci. Eng. Vol. A340 (2003), p.265.

Google Scholar

[8] P.J. Apps, J.R. Bowen and P.B. Prangnell: Acta Mater. Vol. 51 (2003), p.2811.

Google Scholar

[9] R.Z. Valiev, YU.V. Ivanisenko, E.F. Rauch and B. Baudelet: Acta Mater. Vol. 44 (1996), p.4705.

Google Scholar

[10] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta Mater. Vol. 40 (1999), p.795.

Google Scholar

[11] D.H. Shin, W.J. Kim and W.Y. Choo: Scripta Mater. Vol. 41 (1999), 259.

Google Scholar

[12] J. Kim, I. Kim and D.H. Shin: Scripta Mater. Vol. 45 (2001), p.421.

Google Scholar

[13] N. Tsuji, R. Ueji and Y. Minamino: Scripta Mater. Vol. 47 (2002), p.69.

Google Scholar

[14] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater. Vol. 47 (2002), p.893.

Google Scholar

[15] K.T. Park and D.H. Shin: Mater. Sci. Eng. Vol. A334 (2002), p.79.

Google Scholar

[16] N. Kamikawa, N. Tsuji and Y. Minamino; Sci. Tech. Adv. Mater. Vol. 5 (2004), p.163.

Google Scholar

[17] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

Google Scholar

[18] S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai: Scripta Mater. Vol. 46 (2002), p.281.

Google Scholar

[19] N. Hansen: Metall. Trans. A Vol. 32A (2001), p.2917.

Google Scholar

[20] Q. Liu, X. Huang, D.J. Lloyd and N. Hansen: Acta Mater. Vol. 50 (2002), p.3789.

Google Scholar

[21] F.J. Humphreys, P.B. Prangnell and R. Priestner: Current Opinion in Solid State and Mater. Sci. Vol. 5 (2001), p.15.

Google Scholar

[22] F.J. Humphreys and M. Hatherly: RECRYSTALLIZATION and Related Annealing Phenomena ( Pegramon, New York, 1995), p.85.

Google Scholar

[23] P.B. Prangnell, J.R. Bowen and A. Gholinia: Proc. of the 22nd RISØ Int. Symp. on Mater. Sci., RISØ National Laboratory, Roskilde, Denmark (2001), p.105.

Google Scholar