A New Salt-Inclusion Single-Phased White Phosphor Ba7B3SiO13Br:Dy3+ for White Light-Emitting Diodes

Article Preview

Abstract:

A series of Ba7B3SiO13Br:Dy3+ phosphors were synthesized by a conventional solid-state reaction method for the first time. The X-ray diffraction patterns confirmed that the samples were pure phase and crystallized in a hexagonal phase with a space group of the P63mc (186). The luminescence spectrum exhibited a strong blue emission band peaked at 478 nm, a strong yellow emission band at 575 nm and a weak emission band at 665 nm, corresponding to the transitions from 4F9/2 to 6H15/2, 6H13/2 and 6H13/2 of Dy3+, respectively. According to the emission spectrum of Ba6.92B3SiO13Br:0.08Dy3+ excited at 349 nm, the chromaticity coordinate was calculated to be (0.317, 0.358) located on the white light region. The concentration quenching mechanism of Dy3+ in Ba7B3SiO13Br was ascribed to the multipolar-multipolar interaction. The current researches suggested that the phosphor can be used as a white phosphor suitable for white light-emitting diodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-97

Citation:

Online since:

May 2019

Export:

Price:

* - Corresponding Author

[1] H.T. Chen and S.Y. Hui: IEEE Trans. Ind. Electron. Vol. 61 (2014), p.784.

Google Scholar

[2] K.R. Cope and B. Bugbee: Hortscience Vol. 48 (2013), p.504.

Google Scholar

[3] M. Xin, D.T. Tu, H.M. Zhu, W.Q. Luo, Z.G. Liu, P. Huang, R.F. Li, Y.G. Cao and X.Y. Chen: J. Mater. Chem. C Vol. 3 (2015), p.7286.

Google Scholar

[4] J. Liu, M. Jiang, Y.M. Mei, Z.C. Wu and S.P. Kuang: Prog. Chem. Vol. 25 (2013), p. (2068).

Google Scholar

[5] C. H. Huang, W.R. Liu and T.M. Chen: J. Phys. Chem. C Vol. 114 (2010), p.18698.

Google Scholar

[6] C. K. Chang and T.M. Chen: Appl. Phys. Lett. Vol. 91 (2007), p.3.

Google Scholar

[7] K. Li, M.M. Shang, H.Z. Lian and J. Lin: J. Mater. Chem. C Vol. 4 (2016), p.5507.

Google Scholar

[8] Y. H. Chen, X.R. Cheng, M. Liu, Z.M. Qi and C.S. Shi: J. Lumines. Vol. 129 (2009), p.531.

Google Scholar

[9] J. Y. Sun, X.Y. Zhang, Z.G. Xia and H.Y. Du: Mater. Res. Bull. Vol. 46 (2011), p.2179.

Google Scholar

[10] Q. Su, H.B. Liang, C.Y. Li, H. He, Y.H. Lu, J. Li and Y. Tao: J. Lumines. Vol. 122 (2007), p.927.

Google Scholar

[11] M.V.D. Rezende, P.J.R. Montes, M.E.G. Valerio and R.A. Jackson: Opt. Mater. Vol. 83 (2018), p.328.

Google Scholar

[12] Neharika, V. Kumar, V.K. Singh, J. Sharma, O.M. Ntwaeaborwa and H.C. Swart: J. Alloy. Compd. Vol. 688 (2016), p.939.

Google Scholar

[13] X. X. Lin, F.F. Zhang, S.L. Pan, H.W. Yu, F.Y. Zhang, X.Y. Dong, S.J. Han, L.Y. Dong, C.Y. Bai and Z. Wang: J. Mater. Chem. C Vol. 2 (2014), p.4257.

Google Scholar

[14] Z. D. Ma, S.C. Tian, H. Wu, J.C. Zhang and H.H. Li: Ceram. Int. Vol. 44 (2018), p.14582.

Google Scholar

[15] J. H. Zhou, X. Yu, T. Wang, D.C. Zhou and J.B. Qiu: J. Rare Earths Vol. 35 (2017), p.241.

Google Scholar

[16] Z. W. Zhang, A.J. Song, S.T. Song, J.P. Zhang, W.G. Zhang and D.J. Wang: J. Alloy. Compd. Vol. 629 (2015), p.32.

Google Scholar

[17] R. Y. Mi, J. Chen, Y.G. Liu, L.F. Mei, J.Y. Yuan, Y.F. Xia, Z.H. Huang and M.H. Fang: Mater. Res. Bull. Vol. 86 (2017), p.146.

Google Scholar

[18] D. L. Geng, M.M. Shang, Y. Zhang, H.Z. Lian, Z.Y. Cheng and J. Lin: J. Mater. Chem. C Vol. 1 (2013), p.2345.

Google Scholar

[19] F. X. Liu, Q.H. Liu, Y.Z. Fang, N. Zhang, B.B. Yang and G.Y. Zhao: Ceram. Int. Vol. 41 (2015), p. (1917).

Google Scholar