Liquid-Liquid Phase Separation in Quenched Fe71Cu10P10B9 Multi-Component Alloy

Article Preview

Abstract:

Liquid-liquid phase separation (LLPS) in the rapidly solidified Fe71Cu10P10B9 alloy under different casting conditions is investigated based on the XRD, DSC, and SEM measurements. It is found that during rapid solidification process, Cu-rich globules precipitated in the matrix which mainly consists of α-Fe and Fe3B0.82P0.18 crystals. With increasing cooling rate, LLPS becomes weaker, leading to less precipitation of Cu-rich globules, while the microstructure of the matrix became finer. Magnetic measurements show that the saturation induction and the coercivity of the present samples increase first and then decrease with increasing cooling rate. The corresponding mechanisms related to magnetic performance are also discussed details.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

January 2017

Export:

Price:

[1] S. Curiotto, R. Greco, N.H. Pryds, E. Johnson and L. Battezzati: Fluid Phase Equilib, Vol. 256 (2007) No. 1-2, p.132.

DOI: 10.1016/j.fluid.2006.10.003

Google Scholar

[2] T. Nagase, M. Suzuki and T. Tanaka: J. Alloys Compd, Vol. 619(2015), p.332.

Google Scholar

[3] I. Yamauchi, T. Irie and H. Sakaguchi: J. Alloys Compd, Vol. 403(2005)No. 1-2, p.211.

Google Scholar

[4] Y. Nakagawa: Acta Metall, Vol. 6(1958), p.704.

Google Scholar

[5] N. Liu, P.H. Wu, P.J. Zhou, Z. Peng, X.J. Wang and Y.P. Lu: Intermetallics, Vol. 72(2016), p.44.

Google Scholar

[6] J. He, J.Z. Zhao and L. Ratke: Acta Mater, Vol. 54(2006)No. 7, p.1749.

Google Scholar

[7] N. Liu, F. Liu, Z. Chen, G.C. Yang, C.L. Yang and Y.H. Zhou: Sci, Vol. 28(2012)No. 7, p.622.

Google Scholar

[8] T. Fang, L. Wang, C.X. Peng and Y. Qi: Journal of physics, Vol. 24(2012)No. 50, p.505103.

Google Scholar

[9] A. Makino, H. Men, T. Kubota, K. Yubuta and A. Inoue: J. Appl. Phys, Vol. 105(2009)No. 7, p. 07A308.

Google Scholar

[10] A. Urata, H. Matsumoto, S. Yoshida and A. Makino: J. Alloys Compd, Vol. 509(2011), p. S431.

Google Scholar

[11] A. Urata, M. Yamaki, K. Satake, H. Matsumoto and A. Makino: J. Appl. Phys, Vol. 113 (2013) No. 17, p. 17A311.

Google Scholar

[12] A. Urata, M. Yamaki, M. Takahashi, K. Okamoto, H. Matsumoto, S. Yoshida and A. Makino: J. Appl. Phys, Vol. 111(2012)No. 7, p. 07A335.

Google Scholar

[13] T. Kozieł, J. Latuch and S. Kąc: J. Alloys Compd, Vol. 586(2014), p. S121.

Google Scholar

[14] Z. Wu, X. a. Fan, G. Li, Z. Gan, J. Wang and Z. Zhang: Materials Science and Engineering: B, Vol. 187 (2014), p.61.

Google Scholar

[15] B. Butvinová, P. Butvin, M. Kuzminski, A. Slawska-Waniewska, I. Mat'ko, P. Švec, M. Kadlečíková, M. Hubeňák and D. Janičkovič: J. Alloys Compd, Vol. 648(2015), p.527.

DOI: 10.1016/j.jallcom.2015.06.232

Google Scholar

[16] T. Nagase, A. Yokoyama and Y. Umakoshi: J. Alloys Compd, Vol. 494(2010)No. 1-2, p.295.

Google Scholar

[17] C. Biselli and D.G. Morris: Acta Mater, Vol. 44(1996)No. 2, p.493.

Google Scholar

[18] X. Zeng, C.D. Cao, Z.B. Sun and X.X. Wen: Mater[J]. Rev, Vol. 25(2011)No. 11, p.82.

Google Scholar

[19] Z.C. Xia, W.L. Wang, W. Zhai, Z.Q. Li and B.B. Wei: Chi. J. of Nonferrous Met, Vol. 23 (2013) No. 3, p.711.

Google Scholar

[20] Z.Q. Li, W.L. Wang, W. Zhai and B.B. Wei: Acta Phys. Sin, Vol. 60(2011)No. 10, p.108101.

Google Scholar

[21] S. Tumanski: Handbook of Magnetic Measurements(China Machine Press, China 2013, p.88).

Google Scholar