Study of Calcium Magnesium Aluminate CaMgAl10O17 Formation

Article Preview

Abstract:

Aluminates of alkaline earth elements have high photoluminescence properties and resistance to UV radiation. Due to this, they are widely used in optical industry. In this work magnesium calcium aluminate was prepared by sol-gel method. The main stages of the formation of the crystalline structure CaMgAl10O17 were determined by thermal analysis, X-ray diffraction and IR spectroscopy. The surface morphology was studied using scanning electron microscopy. The ratio of elements in the product was installed by X-ray microanalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-167

Citation:

Online since:

October 2015

Export:

Price:

[1] A. S. Kumar, R. A. Kumar, R. Balasundaraprabhu, K. Senthil, S. R. Kumar, V. Gunasekaran Influence of calcination temperature on the luminescent properties of Eu3+ doped CaAl4O7 phosphor prepared by Pechini method, Spectrochim. Acta Part A 134 (2015).

DOI: 10.1016/j.saa.2014.06.023

Google Scholar

[2] Ji-G. Li, Y. Sakka, Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12), Sci. Technol. Adv. Mater. 16 (2015) 014902.

DOI: 10.1088/1468-6996/16/1/014902

Google Scholar

[3] Yang Li, Yi-Yang Li, Kaniyarakkal Sharafudeen, Guo-Ping Dong, Shi-Feng Zhou, Zhi-Jun Ma, Ming-Ying Peng and Jian-Rong Qiu, A strategy for developing near infrared longpersistent phosphors: taking MAlO3: Mn4+, Ge4+ (M ¼ La, Gd) as an example, J. Mater. Chem. C 2 (2014).

DOI: 10.1039/c3tc32075h

Google Scholar

[4] M. Puchalskaa, E. Zycha, M. Sobczyka, A. Watrasc, P. Deren, Effect of charge compensation on up-conversion and UV excited luminescence of Eu3+ in Yb3+–Eu3+ doped calcium aluminate CaAl4O7, Mater. Chem. Phys 147 (2014) 304-310.

DOI: 10.1016/j.matchemphys.2014.05.003

Google Scholar

[5] B. Hallstedt, Thermodynamic assessment of the CaO–MgO–Al2O3 system, J. Amer. Ceram. Soc., 78(1) (1995) 193-198.

Google Scholar

[6] B. Zhang, X. Xu, Q. Li, Y. W u, J. Qiu, X. Yu Long persistent and optically stimulated luminescence behaviors of calcium aluminates with different trap filling processes, J. Solid State Chem. 217 (2014) 136-141.

DOI: 10.1016/j.jssc.2014.06.007

Google Scholar

[7] V.B. Pawade, S.J. Dhoble, Blue emission in Eu2+ activated MgXAl10O17 (X = Sr, Ca) phosphors, Optik 123 (2012) 1879-1883.

DOI: 10.1016/j.ijleo.2012.03.086

Google Scholar

[8] A. Selot, M. Aynyas, M. K. Dev, Synthesis, characterization and optical properties of Ce3+ activated CaMgAl10O17 phosphor, AIP Conf. Proc 1591(1) (2014) 1746-1747.

DOI: 10.1063/1.4873098

Google Scholar

[9] Korosin NC, Francetic V, Bukovec N. Thermal and luminescent properties of Eu2+ doped aluminates prepared by the sol–gel method. J Therm Anal Calorim 111 (2013) 1291-1296.

DOI: 10.1007/s10973-012-2451-y

Google Scholar

[10] C.J. Brinker, G.W. Scherer, Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc., San Diego (1990).

DOI: 10.1080/10426919308934843

Google Scholar

[11] P.N.M. dos Anjos Study of the structure and optical properties of rare-earth-doped aluminate particles prepared by an amorphous citrate sol–gel process / P.N.M. dos Anjos, E.C. Pereira, Y.G. Gobato / J. Alloy. Comp. – 2005. – Vol. 391. №1 – 2. – P. 277–283.

DOI: 10.1016/j.jallcom.2004.08.058

Google Scholar

[12] V. Singha, T.K. G. Raob, J. -J. Zhu, A rapid combustion process for the preparation of MgSrAl10O17: Eu2+ phosphor and related luminescence and defect investigations, J. Lumin. 128 (2008) 583-588.

DOI: 10.1016/j.jlumin.2007.08.014

Google Scholar

[13] T. Dura´n, S. Serena, P. Pena, A. Caballero, S. De Aza, A. H. De Aza, Experimental Establishment of the CaAl2O4–MgO and CaAl4O7–MgO Isoplethal Sections within the Al2O3–MgO–CaO Ternary System / J. Amer. Ceram. Soc. – 2008. –Vol. 91. – №2. – P. 535–543.

DOI: 10.1111/j.1551-2916.2007.02126.x

Google Scholar

[14] A. M. Hofmeister, B. Wopenka, A. J. Locock, Spectroscopy and structure of hibonite, grossite, and CaAl2O4: Implications for astronomical environments, Geochimica et Cosmochimica Acta. 68 (2004) 4485-4503.

DOI: 10.1016/j.gca.2004.03.011

Google Scholar

[15] Y-P. Chang, P-H. Chang, Yu-T. Lee, T-Yu. Lee. Y-H. Lai, S-Yu. Chen Morphological and structural evolution of mesoporous calcium aluminate nanocomposites by microwave-assisted synthesis, microporous and Mesophorous Materials 183 (2014) 134-142.

DOI: 10.1016/j.micromeso.2013.09.013

Google Scholar

[16] N. Avci, K. Korthout, M. A. Newton, P. F. Smet, D. Poelman, Valence states of europium in CaAl2O4: Eu phosphors, Optical Materials Express. 2 (2012) 321-330.

DOI: 10.1364/ome.2.000321

Google Scholar

[17] L.A. Selyunina, L.N. Mishenina, V.V. Kozik, Effect of citric acid and ethylene glycol on the formation of calcium aluminate via the sol-gel method, Rus. J. of Inorg. Chem. 58(4) (2013) 450-455.

DOI: 10.1134/s0036023613040165

Google Scholar

[18] J. Puriwat, W. Chaitree, K. Suriye, S. Dokjampa, P. Praserthdam, J. Panpranot, Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalystsCatal. Commun. 12 (2010) 80-85.

DOI: 10.1016/j.catcom.2010.08.015

Google Scholar