Novel Punch Design for Nonlinear Strain Path Generation and Evaluation Methods

Article Preview

Abstract:

The forming limit curve (FLC) is a common method to assess material formability in sheet metal forming processes. It is determined with the Nakajima or Marciniak test according to ISO 12004-2 [1]. The disadvantage of these test procedures is that the results are only valid for linear strain paths. In most real sheet metal forming processes, like deep-drawing of complex car body parts or multi-step processes, nonlinear strain paths exist. It is well-known that the classic FLC cannot describe material failure for nonlinear strain paths.At the Institute for Metal Forming Technology (IFU), new punch geometries have been developed to realise specific nonlinear strain paths in a standard Nakajima testing environment. The formability of sheet materials under nonlinear loading can be determined more accurately when using these new punch geometries than with the classic Nakajima test setup. Different strain paths can be realised depending on the specimen and the punch design, in order to evaluate the formability of the material according to strain conditions as they occur in real forming processes.Within this paper, the results of different punch geometries have been tested using the mild deep-drawing steel DC04. The strain conditions before crack initiation are compared to the standard FLC and to the newly developed IFU-FLC criterion, which can predict material failure under nonlinear strain paths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-324

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] Deutsches Institut für Normung e.V., Metallische Werkstoffe - Bleche und Bänder - Bestimmung der Grenzformänderungskurve - Teil 2: Bestimmung von Grenzformänderungskurven im Labor, Beuth Verlag GmbH, (2009).

DOI: 10.31030/3212338

Google Scholar

[2] S.P. Keeler, Plastic Instability and fracture in sheets stretched over rigid punches, D. Sc. thesis, Cambridge, (1961).

Google Scholar

[3] M. Abspoel, E.H. Atzema, J.M.M. Droog, T. Khandeparkar, M.E. Scholting, F.J. Schouten, H. Vegter, Inherent influence of strain path in Nakazima FLC testing, Proceedings of the IDDRG 2011 International Conference, Bilbao, (2011).

Google Scholar

[4] NUMISHEET Benchmark Committee, Benchmark 1, Nonlinear Strain Path Forming Limit of a Reverse draw Part A: Benchmark Description, AIP Conference Proceedings, Volume 1567, (2014).

DOI: 10.1063/1.4849977

Google Scholar

[5] W. Mueschenborn, H. -M. Sonne, Einfluß des Formänderungsweges auf die Grenzformänderungen des Feinblechs, Arch. Eisenhüttenwes. 46 Nr. 9 (1975) 597-602.

DOI: 10.1002/srin.197503686

Google Scholar

[6] A. Werber, M. Liewald, W. Nester, M. Grünbaum, K. Wiegand, J. Simon, J. Timm, W. Hotz, Development of a new failure prediction criterion in sheet metal forming, Int. J. Mater. Form. (2013), pp.395-403.

DOI: 10.1007/s12289-013-1134-y

Google Scholar

[7] A. Werber, M. Liewald, M. Grünbaum, W. Hotz, W. Nester, J. Simon, J. Timm, K. Wiegand, G. Wöhlke, Prediction of localized necking for forming processes exhibiting non-linear strain paths for different aluminum sheet alloys: submitted to Forming Technology Forum (2013).

DOI: 10.1007/s12289-013-1134-y

Google Scholar