Options for Chemical Modification of Wastes from a Brazilian Hardwood Species and Potential Applications

Article Preview

Abstract:

Two pathways for chemical modification of wastes from an Amazon hardwood species named Cordia goeldiana were proposed in this work. Variations in reaction time (2 h or 0.5 h) and temperature (80 and 150 °C), besides reaction medium (mechanical stirring or pressurized closed system) were tested for alkali treatment. NaOH at 5% was kept for both conditions. Afterwards, bleaching with H2O2 and NaOH was performed, but reaction conditions were held constant for both pathways. In general, the mild alkali treatment resulted mainly in the removal of extractives and hemicelluloses from the raw sawdust. The onset temperature and crystalline index increased. On the other hand, the use of higher pressure and temperature in alkali treatment at closed system had a remarkable lignin removal and crystalline index increase without changing cellulose polymorphism as the main effects, but thermal stability became lower. Apart from mineral residues removal, bleaching had negligible effects on fiber properties, suggesting that this procedure could be avoided.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-328

Citation:

Online since:

December 2014

Export:

Price:

* - Corresponding Author

[1] A.C. Barros, A. Verissimo, A expansão madeireira na Amazônia: impactos e perspectivas para o desenvolvimento sustentável no Pará, second ed., Imazon, Belém, (2002).

Google Scholar

[2] H. Lorenzi. Árvores Brasileiras, fourth ed., Instituto Plantarum de Estudos da Flora Ltda., Nova Odessa, (2002).

Google Scholar

[3] I.V. Weyenberg, T.C. Truong, B. Vangrimde and I. Verpoest, Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment, Composites Part A. 37 (2006) 1368-1376.

DOI: 10.1016/j.compositesa.2005.08.016

Google Scholar

[4] G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites, Biomacromol. 10 (2009) 425-432.

DOI: 10.1021/bm801193d

Google Scholar

[5] M.F. Rosa, B. Chiou, L.S. Medeiros, D.F. Wood, T.G. Willians, L.H.C. Mattoso, W.J. Orts and S.H. Iman, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresour. Technol. 100 (2009).

DOI: 10.1016/j.biortech.2009.03.085

Google Scholar

[6] W.S. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang and P. Chen, Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process, Cellul. 18 (2011) 433-442.

DOI: 10.1007/s10570-011-9497-z

Google Scholar

[7] B. Deepa, E. Abraham, B.M. Cherian, A. Bismarck, J.J. Blaker, L.A. Pothan, A.L. Leao, S.F. de Souza and M. Kottaisamy, Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, Bioresour. Technol. 102 (2011).

DOI: 10.1016/j.biortech.2010.09.030

Google Scholar

[8] B. Wang, M. Sain, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Compos. Sci. Technol. 67 (2007) 2521-2527.

DOI: 10.1016/j.compscitech.2006.12.015

Google Scholar

[9] M.L. Hassan, E.A. Hassan, K.N. Oksman, Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites, J. Mater. Sci. 46 (2011) 1732-1740.

DOI: 10.1007/s10853-010-4992-4

Google Scholar

[10] Associação Brasileira de Normas Técnicas (ABNT). NBR 14853. Determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona (2010).

Google Scholar

[11] Associação Brasileira de Normas Técnicas (ABNT). NBR 7989. Pasta celulósica e madeira determinação de lignina insolúvel em ácido. Rio de Janeiro: ABNT, 6p. (2010).

Google Scholar

[12] B.L. Browning, The chemistry of wood, Interscience Publisher, Warrenvile, (1963).

Google Scholar

[13] J.F. Kennedy, G.O. Phillips, P.A. Williams, E. Horwood, Wood and cellulosics: Industrial utilization, biotechnology, structure and properties, Br. Polym. J. 20 (1987) 300-(1988).

DOI: 10.1002/pi.4980200327

Google Scholar

[14] L. Segal, J.J. Creely, A.E. Martin and C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (1959) 786-794.

DOI: 10.1177/004051755902901003

Google Scholar

[15] J. Flandez, T.I. González, J.R. Bayer, N. El Mansouri, F.M. Vilaseca and P. Mutjé, Management of corn stalk waste as reinforcement for polypropylene injection moulded composites, BioResour. 7 (2012) 1836-1849.

DOI: 10.15376/biores.7.2.1836-1849

Google Scholar

[16] S. Sheshmani, A. Ashori, F. Farhani, Effect of extractives on the performance properties of wood flour-polypropylene composites, J. Appl. Polym. Sci. 23 (2012) 1563-1567.

DOI: 10.1002/app.34745

Google Scholar

[17] W. Lan, C.F. Liu, R.G. Sun, Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction, J. Agric. Food. Chem. 59 (2011) 8691-8701.

DOI: 10.1021/jf201508g

Google Scholar

[18] N. Beukes, B.I. Pletschke, Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse, Bioresour. Technol. 102 (2011) 5207-5213.

DOI: 10.1016/j.biortech.2011.01.090

Google Scholar

[19] J. Fernandez-Bolanos, B. Felizón, A. Heredia, R. Guillen and A. Jiménez, Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones, Bioresour. Technol. 68 (1999) 121-132.

DOI: 10.1016/s0960-8524(98)00134-5

Google Scholar

[20] G. Neutelings, Lignin variability in plant cell walls: contribution of new models, Plant Sci. 181 (2011) 379-386.

DOI: 10.1016/j.plantsci.2011.06.012

Google Scholar

[21] H. Sakagami, T. Kushida, T. Oizumi, H. Nakashima and T. Makino, Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine, Pharmacol. The. 128 (2010) 91-105.

DOI: 10.1016/j.pharmthera.2010.05.004

Google Scholar

[22] R. Vanholme, B. Demedts, K. Morreel, J. Ralph and W. Boerjan, Lignin biosynthesis and structure, Plant Physiol. 153 (2010) 895-905.

DOI: 10.1104/pp.110.155119

Google Scholar

[23] A.C. Correa, E.M. Teixeira, L.A. Pessan and L.H.C. Mattoso, Cellulose nanofibers from curaua fibers, Cellul. 17 (2010) 1183-1192.

DOI: 10.1007/s10570-010-9453-3

Google Scholar

[24] P. Eronen, M. Osterberg, A.S. Jaaskelainen, Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy, Cellul. 66 (2009) 2776-2784.

DOI: 10.1007/s10570-008-9259-8

Google Scholar

[25] M.J. John, R.D. Anandjiwala, Recent developments in chemical modification and characterization of natural fiber-reinforced composite, Polym. Compos. 29 (2008) 187-207.

DOI: 10.1002/pc.20461

Google Scholar

[26] J.I. Móran, V.A. Alvarez, V.P. Cyras and A. Vásquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellul. 15 (2008) 149-159.

DOI: 10.1007/s10570-007-9145-9

Google Scholar

[27] A.R. Sena Neto, M.A.M. Araujo, F.V.D. Souza, L.H.C. Mattoso and J.M. Marconcini, Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites, Ind. Crops Prod. 43 (2013).

DOI: 10.1016/j.indcrop.2012.08.001

Google Scholar

[28] A. Rachini, M. Le Troedec, C. Peyratout and A. Smith, Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere, J. Appl. Polym. Sci. 112 (2019) 226-234.

DOI: 10.1002/app.29412

Google Scholar