Analysis of Polypropylene Deformation in a 135° ECAE Die: Experiments and Three-Dimensional Finite Element Simulations

Article Preview

Abstract:

Plastic deformation of polypropylene (PP) resulting from equal channel angular extrusion (ECAE) process was investigated in a 135° die. A phenomenological elastic-viscoplastic constitutive model was identified and coupled with the three-dimensional finite element (FE) method in order to predict the different processing parameters governing the deformation behaviour of PP during the extrusion. An optimal agreement between FE results and experimental data was obtained for a friction coefficient of 0.2. A detailed three-dimensional FE analysis of stress-strain field distribution was then carried out. The effects of both the number of extrusion passes and the processing routes were experimentally highlighted. The results show that the pressing force decreases with the increase of the number of extrusion passes and reaches its saturation state rapidly for routes A and C while, for routes BA and BC, it requires a high number of passes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-78

Citation:

Online since:

December 2009

Export:

Price:

[1] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. Vol. 46 (1998) p.3317.

Google Scholar

[2] V.M. Segal: Mater. Sci. Eng. A Vol. 197 (1995) p.157.

Google Scholar

[3] H.S. Kim: Mater. Sci. Eng. A Vol. 382 (2002) p.317.

Google Scholar

[4] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. Vol. 51 (2006) p.881.

Google Scholar

[5] I.J. Beyerlein and L.S. Toth: Prog. Mater. Sci. Vol. 54 (2009) p.427.

Google Scholar

[6] H.J. Sue and C.K.Y. Li: J. Mater. Sci. Lett. Vol. 17 (1998) p.853.

Google Scholar

[7] H.J. Sue, H. Dilan and C.K.Y. Li: Polym. Eng. Sci. Vol. 39 (1999) p.2505.

Google Scholar

[8] C.K.Y. Li, Z.Y. Xia and H.J. Sue: Polym. Vol. 41 (2000) p.6285.

Google Scholar

[9] Z. Xia, H.J. Sue and A.J. Hsieh: J. Appl. Polym. Sci. Vol. 79 (2001) p. (2060).

Google Scholar

[10] Z. Xia, H.J. Sue, A.J. Hsieh and J.W.L. Huang: J. Polym. Sci. Part B: Polym. Phys. Vol. 39 (2001) p.1394.

Google Scholar

[11] Z.G. Wang, Z.Y. Xia, Z.Q. Yu, E.Q. Chen, H.J. Sue, C.C. Han and B.S. Hsiao: Macromol. Vol. 39 (2006) p.2930.

Google Scholar

[12] B. Aour, F. Zaïri, J.M. Gloaguen, M. Naït-Abdelaziz and J.M. Lefebvre: Comp. Mater. Sci. Vol. 37 (2006) p.491.

DOI: 10.1016/j.commatsci.2005.11.008

Google Scholar

[13] F. Zaïri, B. Aour, J.M. Gloaguen, M. Naït-Abdelaziz and J.M. Lefebvre: Comp. Mater. Sci. Vol. 38 (2006) p.202.

DOI: 10.1016/j.commatsci.2006.02.008

Google Scholar

[14] F. Zaïri, B. Aour, J.M. Gloaguen, M. Naït-Abdelaziz and J.M. Lefebvre: Scripta Mater. Vol. 56 (2007) p.105.

DOI: 10.1016/j.scriptamat.2006.09.032

Google Scholar

[15] B. Aour, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen, O. Rahmani and J.M. Lefebvre: Inter. J. Mech. Sci. Vol. 50 (2008) p.589.

DOI: 10.1016/j.ijmecsci.2007.07.012

Google Scholar

[16] F. Zaïri, B. Aour, J.M. Gloaguen, M. Naït-Abdelaziz and J.M. Lefebvre: Polym. Eng. Sci. Vol. 48 (2008) p.1015.

DOI: 10.1002/pen.21042

Google Scholar

[17] B. Aour, F. Zaïri, M. Naït-Abdelaziz, J.M. Gloaguen and J.M. Lefebvre: J. Manuf. Sci. Eng. Vol. 131 (2009) p.31016.

Google Scholar

[18] B. Aour, F. Zaïri, R. Boulahia, M. Naït-Abdelaziz, J.M. Gloaguen and J.M. Lefebvre: Comp. Mater. Sci. Vol. 45 (2009) p.646.

DOI: 10.1016/j.commatsci.2008.08.020

Google Scholar

[19] M.C. Boyce, D.M. Parks and A.S. Argon: Mech. Mater. Vol. 7 (1988) p.15.

Google Scholar

[20] S. Ahzi, A. Makradi, R.V. Gregory and D.D. Edie: Mech. Mater. Vol. 35 (2003) p.1139.

Google Scholar

[21] O.U. Colak: Int. J. Plast. Vol. 21 (2005) p.145.

Google Scholar

[22] F. Zaïri, K. Woznica and M. Naït-Abdelaziz: Comp. R. Mec. Vol. 333 (2005) p.359.

Google Scholar

[23] F. Zaïri, M. Naït-Abdelaziz, K. Woznica and J.M. Gloaguen: J. Eng. Mater. Tech. Vol. 129 (2007) p.29.

Google Scholar