Isolation and Identification of Bacteria from Marine Biofilms

Article Preview

Abstract:

In the marine environment, biofilms cover most of the subtidal and intertidal solid surfaces. Culturable bacteria forming marine biofilms were isolated on artificial substrate called acrylic coupons. The bacterial isolates were identified through a comparison of 16S rDNA sequences. A total of 115 strains were cultured and identified, 45 of which showed the same sequences with other strains. Therefore, 70 strains were finally identified. The bacterial isolates belonged to a–Proteobacteria (32 isolates), g–Proteobacteria (12 isolates), CFB group bacteria (4 isolates), high GC Gram-positive bacteria (9 isolates), and low GC Gram-positive bacteria (13 isolates). The bacterial isolates may be used as standard bacteria to test new antifouling agent. They may also be utilized as useful bacteria to enhance the settlement of commercial algae and invertebrate larvae for aquaculture.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Pages:

612-617

Citation:

Online since:

January 2005

Export:

Price:

[1] Amoozegar, M.A., F. Malekzadeh, K.A. Malik, P. Schumann and C. Sproer: Int. J. Syst. Evol. Microbiol. (2003) 53: 1059-1063.

Google Scholar

[2] Baumann, L., P. Baumann, M. Mandel and R.D. Allen: J. Bacteriol. (1972) 110: 402-429.

Google Scholar

[3] Baumann, P., L. Baumann and M. Mandel: J. Bacteriol. (1971) 107: 268-294.

Google Scholar

[4] Bruns, A., M. Rohde and L. Berthe-Corti: Int. J. Syst. Evol. Microbiol. (2001) 51: 1997-(2006).

Google Scholar

[5] Chun, J: Computer-assisted classification and identification of actinomycetes. (1995). Ph.D. Thesis, University of Newcastle, Newcastle upon Tyne, UK. Title of Publication (to be inserted by the publisher).

Google Scholar

[6] Dalton, H.M. and P.E. March: Curr. Opin. Biotechnol. (1998) 9: 252-255.

Google Scholar

[7] Dang, H. and C.R. Lovell: Appl. Environ. Microbiol. (2000) 66: 467-475.

Google Scholar

[8] Denner, E.B.M., D. Vybiral, M. Koblizek, P. Kampfer, H.J. Busse and B. Velimirov: Int. J. Syst. Evol. Microbiol. (2002) 52: 1655-1661.

Google Scholar

[9] Felsenstein, J: PHYLIP (Phylogeny inference package), version 3. 5c. (1993) Department of Genetics, University of Washington, Seattle, WA, USA.

Google Scholar

[10] Frias-Lopez, J., A.L. Zerkle, G.T. Bonheyo and B.W. Fouke: Appl. Environ. Microbiol. (2002) 68: 2214-2228.

DOI: 10.1128/aem.68.5.2214-2228.2002

Google Scholar

[11] Hada, H.S., P.A. West, J.V. Lee, J. Stemmler and R.R. Colwell: Int. J. Syst. Bacteriol. (1984) 34: 1-4.

Google Scholar

[12] Kelly, K.M. and A.Y. Chistoserdov: FEMS. Microbiol. Ecol. (2001) 35: 85-95.

Google Scholar

[13] Kushmaro, A., E. Banin, Y. Loya, E. Stackebrandt and E. Rosenberg: Int. J. Syst. Evol. Microbiol. (2001) 51: 1383-1388.

Google Scholar

[14] Kwon, K.K., H.S. Lee, S.Y. Jung, J.H. Yim, J.H. Lee and H.K. Lee: Korea. J. Microbiol. (2002) 40: 260-266.

Google Scholar

[15] Lau, S.C.K., K.K.W. Mak, F. Chen, P. -Y. Qian: MEPS (2002) 226: 301-310.

Google Scholar

[16] Lee, J.H., H.H. Shin, H.K. Lee, K.K. Kwon and S.J. Kim: Kor. J. Microbiol. (1998) 34: 132- 136.

Google Scholar

[17] Lee, Y.K., K.K. Kwon, K.H. Cho, H.W. Kim, J.H. Park and H.K. Lee: J. Microbiol. (2003) 41: 183-187.

Google Scholar

[18] Paul, W.B., K. Ito and K. Watanabe: Environmental Microbiology. (2003) 5: 925-932.

Google Scholar

[19] Pinhassi, J. and T. Berman: Appl. Environ. Microbiol. (2003) 69: 199-211.

Google Scholar

[20] Prakash, B., B.M. Veeregowda and G. Krishnappa: Current Science (2003) 85: 1299-1307.

Google Scholar

[21] Pukall, R., D. Buntefuss, A. Fruhling, M. Rohde, R.M. Kroppenstedt, J. Burghardt, P. Lebaron, L. Bernard and E. Stackebrandt: Int. J. Syst. Bacteriol. (1999) 49: 513-519.

DOI: 10.1099/00207713-49-2-513

Google Scholar

[22] Ruiz-Ponte, C., V. Cilia, C. Lambert and J.L. Nicolas: Int. J. Syst. Bacteriol. (1998) 48: 537- 542.

Google Scholar

[23] Saitou, N. and M. Nei: Mol. Biol. Evol. (1987) 4: 406-425.

Google Scholar

[24] Sorokin, D.Y.: Mikrobiologiya. (1995) 64: 354-365.

Google Scholar

[25] Uchino, Y., A. Hirata, A. Yokota and J. Sugiyama: J. Gen. Appl. Microbiol. (1998) 44: 201-210.

Google Scholar

[26] Venkateswaran, K., M. Kempf, F. Chen, M. Satomi, W. Nicholson and R. Kern: Int. J. Syst. Evol. Microbiol. (2003) 53: 165-172.

Google Scholar

[27] Yoon, J.H., K.H. Kang and Y.H. Park: Int. J. Syst. Evol. Microbiol. (2003) 53: 687-693.

Google Scholar

[28] Yoon, J.H., I.G. Kim, K.H. Kang and Y.H. Park: Int. J. Syst. Evol. Microbiol. (2003) 53: 16251630.

Google Scholar

[29] Yoon, J.H., I.G. Kim, K.H. Kang, T.K. Oh and Y.H. Park: Int. J. Syst. Evol. Microbiol. (2004) 54: 803-808.

Google Scholar

[30] Yoon, J.H., I.G. Kim, K.H. Kang, T.K. Oh and Y.H. Park: Int. J. Syst. Evol. Microbiol. (2003) 53: 1297-1303.

Google Scholar

[31] Yurkov, V.V., S. Krieger, E. Stackebrandt and J.T. Beatty: J. Bacteriol. (1999) 181: 4517- 4525.

Google Scholar