3D Simulation Investigating ZnO NWFET Characteristics

Article Preview

Abstract:

3D Simulation was carried out and compared with fabricated ZnO NWFET. The device had the following electrical output characteristics: mobility value of 10.0 cm2/Vs at a drain voltage of 1.0 V, threshold voltage of 24 V, and subthreshold slope (SS) of 1500 mV/decade. The simulation showed that the device output results are influenced by two main issues: (i) contact resistance (Rcon ≈ 11.3 MΩ) and (ii) interface state trapped charge number density (QIT = 3.79 x 1015 cm-2). The QIT was derived from the Gaussian distribution that depends on two parameters added together. These parameters are: an acceptor-like exponential band tail function gGA(E) and an acceptor-like Gaussian deep state function gTA(E). By de-embedding the contact resistance, the simulation is able to improve the device by producing excellent field effect mobility of 126.9 cm2/Vs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-48

Citation:

Online since:

June 2019

Export:

* - Corresponding Author

[1] S. M. Sultan, N. J. Ditshego, R. Gunn, P. Ashburn, and H. M. Chong, Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors.,, Nanoscale Res. Lett., vol. 9, no. 1, p.517, Jan. (2014).

DOI: 10.1186/1556-276x-9-517

Google Scholar

[2] B. Bayraktaroglu, S. Member, K. Leedy, and R. Neidhard, High-Frequency ZnO Thin-Film Transistors on Si Substrates,, vol. 30, no. 9, p.946–948, (2009).

DOI: 10.1109/led.2009.2025672

Google Scholar

[3] C. Hsu and T. Tsai, Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates,, J. Electrochem. Soc., vol. 158, no. 2, pp. K20–K23, Feb. (2011).

DOI: 10.1149/1.3517078

Google Scholar

[4] Z. Yu-Ming, H. Yi-Gang, L. Ai-Xia, and W. Qing, Simulation of grain boundary effect on characteristics of ZnO thin film transistor by considering the location and orientation of grain boundary,, Chinese Phys. B, vol. 18, no. 9, p.3966–3969, Sep. (2009).

DOI: 10.1088/1674-1056/18/9/057

Google Scholar

[5] F. Hossain, J. Nishii, and S. Takagi, Modeling and simulation of polycrystalline ZnO thin-film transistors,, J. Appl., vol. 94, no. 12, p.7768–7777, Dec. (2003).

DOI: 10.1063/1.1628834

Google Scholar

[6] F. Hossain, J. Nishii, and S. Takagi, Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors,, Phys. E Low, vol. 21, no. 2–4, p.911–915, Mar. (2004).

DOI: 10.1016/j.physe.2003.11.149

Google Scholar

[7] W.-K. Hong, G. Jo, S.-S. Kwon, S. Song, and T. Lee, Electrical Properties of Surface-Tailored ZnO Nanowire Field-Effect Transistors,, IEEE Trans. Electron Devices, vol. 55, no. 11, p.3020–3029, Nov. (2008).

DOI: 10.1109/ted.2008.2005156

Google Scholar

[8] J. Maeng, W. Park, M. Choe, G. Jo, Y. H. Kahng, and T. Lee, Transient drain current characteristics of ZnO nanowire field effect transistors,, Appl. Phys. Lett., vol. 95, no. 12, p.123101, (2009).

DOI: 10.1063/1.3232203

Google Scholar

[9] SILVACO International, devedit.manual - devedit_users.pdf,, (Silvaco International) [Online] May 2010. Available: http://www.silvaco.co.uk/content/kbase/devedit.pdf. [Accessed: 28-May-2015].

Google Scholar

[10] SILVACO International, atlas_umv1.book - atlas_users.pdf,, (Silvaco International) [Online] December 2006. Available: http://ridl.cfd.rit.edu/products/manuals/Silvaco/atlas_users.pdf. [Accessed: 28-May-2015].

DOI: 10.1142/9789813237834_0003

Google Scholar

[11] F. Torricelli and J. Meijboom, Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors Part I: Long-Channel Devices,, Electron Devices, vol. 58, no. 8, p.2610–26192619, Aug. (2011).

DOI: 10.1109/ted.2011.2155910

Google Scholar

[12] D. Redinger, Lifetime modeling of ZnO thin-film transistors,, Electron Devices, IEEE Trans., vol. 57, no. 12, p.3460–3465, Dec. (2010).

DOI: 10.1109/ted.2010.2081231

Google Scholar

[13] A. Ahnood, K. Ghaffarzadeh, A. Nathan, P. Servati, F. Li, M. R. Esmaeili-Rad, and A. Sazonov, Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors,, Appl. Phys. Lett., vol. 93, no. 16, p.163503, (2008).

DOI: 10.1063/1.2999590

Google Scholar

[14] A. Zhang, X.-R. Zhao, L.-B. Duan, J.-M. Liu, and J.-L. Zhao, Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position,, Chinese Phys. B, vol. 20, no. 5, p.057201, May (2011).

DOI: 10.1088/1674-1056/20/5/057201

Google Scholar

[15] Y. Zhou and Y. He, Effect of grain boundary on electric performance of ZnO nanowire transistor with wrap-around gate,, J. Cent. South Univ. Technol., vol. 18, no. 4, p.1009–1012, Aug. (2011).

DOI: 10.1007/s11771-011-0795-2

Google Scholar

[16] S. M. Sultan, K. Sun, O. D. Clark, T. B. Masaud, Q. Fang, R. Gunn, J. Partridge, M. W. Allen, P. Ashburn, and H. M. H. Chong, Electrical Characteristics of Top-Down ZnO Nanowire Transistors Using Remote Plasma ALD,, IEEE Electron Device Letters, vol. 33, no. 2, pp.203-205, Feb. (2012).

DOI: 10.1109/led.2011.2174607

Google Scholar

[17] N.A.B. Ghazali, M. Ebert, N.M.J. Ditshego, M.R.R. de Planque, H.M.H. Chong, Top-down fabrication optimisation of ZnO nanowire-FET by sidewall smoothing,, Microelectronic Engineering (MNE), vol. 159, p.121–126, Feb. (2016).

DOI: 10.1016/j.mee.2016.02.068

Google Scholar

[18] N.M.J. Ditshego ⇑, K. Sun, I. Zeimpekis, P. Ashburn, M.R.R. de Planque, H.M.H. Chong, Effects of surface passivation on top-down ZnO nanowire transistors,, Microelectronic Engineering (MNE), vol. 145, p.91–95, March (2015).

DOI: 10.1016/j.mee.2015.03.013

Google Scholar