A Comparative Numerical Study of Junctionless and p-i-n Tunneling Carbon Nanotube Field Effect Transistor

Article Preview

Abstract:

In this paper, a gate-all-around junctionless tunnel field effect transistor (JL-TFET) based on carbon nanotube (CNT) material is introduced and simulated. The JL-TFET is a CNT-channel heavily n-type-doped junctionless field effect transistor (JLFET) which utilizes two insulated gates (Control-Gate, P-Gate) with two different metal workfunctions in order to treat like tunnel field effect transistor (TFET). In this design, the privileges of JLTFET and TFET are mixed together. The numerical comparative study on the performance characteristics of JL-TFET and conventional p-i-n TFET demonstrated that the proposed JL-TFET has a higher ON-state current driveability (ION), a larger ON/OFF-current ratio (ION/IOFF), a lower drain induced barrier lowering (DIBL), a shorter delay time (τ), and also a superior cut-off frequency (ƒT). Moreover, in order to further performance improvement of proposed JLTFET, three novel device structures namely as junctionless linear descending gate workfunction TFET (JL-LDWTFET), junctionless linear ascending gate workfunction TFET (JL-LAWTFET) and junctionless triple metal gate TFET (JL-TMGTFET) are proposed by gate workfunction engineering approach. According to simulation results, the JL-TMGTFET with the gate composed of three segments of different work functions shows excellent characteristics with high ION/IOFF ratio, a superior ambipolar characteristic, a shorter delay time and a better cut-off frequency compared to conventional p-i-n TFET and other proposed junctionless-based features. All the simulations are done with the full quantum mechanical simulator for a channel length of 60-nm using nonequilibrium Green’s function (NEGF) method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-75

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] S. Ijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.

Google Scholar

[2] Z. Yao, C.L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (2000) 2941–2944.

DOI: 10.1103/physrevlett.84.2941

Google Scholar

[3] S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49–52.

DOI: 10.1038/29954

Google Scholar

[4] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic circuits with carbon nanotube transistors, Science 294 (2001) 1317–1320.

DOI: 10.1126/science.1065824

Google Scholar

[5] D.J. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, H. -S.P. Wong, Device scaling limits of Si mosfets and their application dependencies, Proc. IEEE 89 (2001) 259–288.

DOI: 10.1109/5.915374

Google Scholar

[6] J.Y. Park, S. Rosenblatt, Y. Yaish, V. Sazanova, H. Ustunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Electron–phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4 (2004) 517–520.

DOI: 10.1021/nl035258c

Google Scholar

[7] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73 (1998) 2447–2449.

DOI: 10.1063/1.122477

Google Scholar

[8] L. Yang, J. Chen, J. Zhang, J. Zhang, Quantum transport through finite length double-walled carbon nanotubes, Phys. Status Solidi 243(2006) 1306–1313.

DOI: 10.1002/pssb.200541209

Google Scholar

[9] P.A. Orellana, M. Pacheco, Photon-assisted transport in a carbon nanotube calculated using Green's function techniques, Phys. Rev. B 75 (2007) 115427-115432.

DOI: 10.1103/physrevb.75.115427

Google Scholar

[10] J. Appenzeller, Y. -M. Lin, J. Knoch, P. Avouris, Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors, Phys. Rev. Lett. 93 (2004) 196805-196810.

DOI: 10.1103/physrevlett.93.196805

Google Scholar

[11] A. Javey, R. Tu, D.B. Farmer, J. Guo, R.G. Gordon, H. Dai, High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts, Nano Lett. 5 (2005) 345-348.

DOI: 10.1021/nl047931j

Google Scholar

[12] V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, The tunnel source (PNPN) n-MOSFET: A novel high performance transistor, IEEE Trans. Electron Devices 55 (2008) 1013-1019.

DOI: 10.1109/ted.2008.916711

Google Scholar

[13] J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, Comparing carbon nanotube transistors—The ideal choice: A novel tunneling device design, IEEE Trans. Electron Devices 52 (2005) 2568-2576.

DOI: 10.1109/ted.2005.859654

Google Scholar

[14] J. Knoch, S. Mantl, and J. Appenzeller, Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one dimensional devices, Solid State Electron. 51 (2007) 572-578.

DOI: 10.1016/j.sse.2007.02.001

Google Scholar

[15] K. K. Bhuwalka, J. Schulze, and I. Eisele, Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering, IEEE Trans. Electron Devices 52 (2005) 909-917.

DOI: 10.1109/ted.2005.846318

Google Scholar

[16] O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions, IEEE Electron Device Lett. 29 (2008).

DOI: 10.1109/led.2008.2000970

Google Scholar

[17] S. Heinze, J. Tersoff, and P. Avouris, Electrostatic engineering of nanotube transistors for improved performance, Appl. Phys. Lett. 83 (2003) 5038-5040.

DOI: 10.1063/1.1632531

Google Scholar

[18] J. Li and Q. Zhang, Simulation of ambipolar-to-unipolar conversion of carbon nanotube based field effect transistors, Nanotechnology 16 (2005) 1415-1418.

DOI: 10.1088/0957-4484/16/8/074

Google Scholar

[19] A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, High-κ dielectrics for advanced carbon nanotube transistors and logic gates, Nature Mater. 10 (2002) 241–246.

DOI: 10.1038/nmat769

Google Scholar

[20] S. Saurabh and M. J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor, IEEE Trans. Electron Devices 58 (2011) 404-410.

DOI: 10.1109/ted.2010.2093142

Google Scholar

[21] O. M. Nayfeh et al., Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions, IEEE Electron Device Lett. 29 (2008) 1074-1077.

DOI: 10.1109/led.2008.2000970

Google Scholar

[22] Colinge, J. -P., Lee, C. -W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O'Neill, B., Blake, A., White, M., Kelleher, A. -M., McCarthy, B., Murphy, Nanowire transistors without junctions, Nat. Nanotechnol. 5 (2010) 225–229.

DOI: 10.1038/nnano.2010.15

Google Scholar

[23] J. P. Colinge, A. Kranti, R. Yan, C. W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, and P. Razavi, Junctionless nanowire transistor (JNT): Properties and design guidelines, Solid State Electron 66 (2011). 33-37.

DOI: 10.1016/j.sse.2011.06.004

Google Scholar

[24] J.P. Colinge, Junctionless Transistors, IMFEDK, IEEE Int. Conference 20 (2012) 1-2.

Google Scholar

[25] J. -P. Colinge, C-W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarov, and R. T. Doria, Reduced electric field in Junctionless transistors, Appl. Phys. Lett. 96 (2010) 073511-073513.

DOI: 10.1063/1.3299014

Google Scholar

[26] S. Gundapaneni, S. Ganguly, and A. Kottantharayil, Bulk planar Junctionless transistor (BPJLT), " An attractive device alternative for scaling, IEEE Electron Device Lett. 32 (2011) 261-263.

DOI: 10.1109/led.2010.2099204

Google Scholar

[27] R. K. Baruah, R.P. Paili, Analog Analog Performance of Bulk Planar Junctionless Transistor (BPJLT) , ICCCNT, IEEE Int. Conference 10 (2012) 1-4.

DOI: 10.1109/icccnt.2012.6395875

Google Scholar

[28] L. Ansari, B. Feldman, G. Fagal, C.M. Lacambra, M.G. Haverty, K.J. Kuhn, S. Shankar, and J.C. Greer, First Principle-Based Analysis of Single-Walled Carbon Nanotube and Silicon Nanowire Junctionless Transistors, IEEE Trans. on Nanotech. 12 (2013).

DOI: 10.1109/tnano.2013.2279424

Google Scholar

[29] S. M. Lee, J. Y. Kim, C. G. Yu, J. T. Park, A comparative Study on Hot Carrier Effects in Inversion-mode and Junctionless MuGFETs, Solid-State Electronics 79 (2013) 253-257.

DOI: 10.1016/j.sse.2012.07.001

Google Scholar

[30] R. T. Doria, M. A. Pavanello, R. D. Trevisoli, M. D. Souza, C-W. Lee, I. Ferain, N. D. Akhavan, R, Yan, P. Razavi, R. Yu, A. Kranti, and J-P. Colinge, Junctionless Multiple-Gate Transistors for Analog Application, IEEE Trans. Electron Devices 58 (2011).

DOI: 10.1109/ted.2011.2157826

Google Scholar

[31] S. -J. Choi, D-I. Moon, S. Kim, J-H. Ahn, J-S. Lee, Jee-Y. Kim, and Y-K. Choi, Nonvolatile memory by all-around-gate Junctionless transistor composed of silicon nanowire on bulk substrate, IEEE Electron Device Lett. 32 (2011) 602-604.

DOI: 10.1109/led.2011.2118734

Google Scholar

[32] C. -J. Lee, T-I. Tsai, Y-L. Liou, Z-M. Lin, H-C. Lin, and T-S. Chao, Gate-all-around Junctionless transistors with heavily doped Polysilicon nanowire channels, IEEE Electron Device Lett. 32 (2011) 521-523.

DOI: 10.1109/led.2011.2107498

Google Scholar

[33] B. Ghosh and M. W. Akram, Junctionless tunnel field effect transistor, IEEE Electron. Device Lett. 34 (2013) 548-586.

DOI: 10.1109/led.2013.2253752

Google Scholar

[34] P. K. Asthana, B. Ghosh, Y. Goswami, and B. M. M. Tripathi, High-speed and low power ultradeep-submicrometer III–V heterojunctionless tunnel fieldeffect transistor, IEEE Electron. Device Lett. 61 (2014) 479-486.

DOI: 10.1109/ted.2013.2295238

Google Scholar

[35] R. M. Imen Abadi and S. A, Sedigh Ziabari, Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog application, Microelectr. Engineer. 162 (2016) 12-16.

DOI: 10.1016/j.mee.2016.04.016

Google Scholar

[36] R. M. Imen Abadi and S.A.S. Ziabari, Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application, Appl. Phys. A 10 (2016) 616-622.

DOI: 10.1007/s00339-016-0151-3

Google Scholar

[37] H. Wang, S. Chang, Y. Hu, H. He, J. He, Q. Huang, F. He, and G. Wang, A novel barrier controlled tunnel FET, IEEE Electron Device Lett. 35 (2014) 798-800.

DOI: 10.1109/led.2014.2325058

Google Scholar

[38] S.O. Koswatta, J. Guo, D. Nikonov, MOSCNT: code for carbon nanotube transistor, simulation. http: /nanohub. org/resources/1989 (2006).

Google Scholar

[39] J. Guo, A. Javey, H. Dai, and M. Lundstrom, Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors, IEDM, IEEE Int. Conference 10 (2004) 703-706.

DOI: 10.1109/iedm.2004.1419266

Google Scholar

[40] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, (1995).

Google Scholar

[41] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Property of Carbon Nanotubes, Imperial College Press, London, UK, (1998).

Google Scholar

[42] J. Guo, S. Datta, M. Lundstrom, M.P. Anantram, Int. J. Multiscale Comput. Eng. 2 (2004) 257.

Google Scholar

[43] S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, UK, (2005).

Google Scholar

[44] I. Hassaninia, M. H. Sheikhi, and Z. Kordrostami, Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts, Solid State Electron. 52 (2008) 980-985.

DOI: 10.1016/j.sse.2008.01.021

Google Scholar

[45] Cheng, Y., Jeng, M.C., Liu, Z., Huang, J., Chan, M., Chen, K., Ko, P.K. and Hu, C, A physical and scalable I-V model in BSIMv3 for analog/digital circuit simulation, IEEE Trans Electron Devices 44 (1997) 277-287.

DOI: 10.1109/16.557715

Google Scholar

[46] Publications of international technology roadmap for semiconductors (ITRS), 2013 editions. (http: /www. itrs. net).

Google Scholar

[47] M. Salmani-Jelodar, S. Kim, K. Ng, and G. Klimeck, Transistor roadmap projection using predictive full-band atomistic modeling, Appl. Phys. Lett. 105 (2014) 083508-0835014.

DOI: 10.1063/1.4894217

Google Scholar

[48] A. Mirsa, H. Kalita, and A. Kottantharayil, Work Function Modulation and Thermal Stability of Reduced Graphene Oxide Gate Electrodes in MOS Devices, ACS Appl. Mater. Interfaces 6 (2013) 789-794.

DOI: 10.1021/am404649a

Google Scholar

[50] J. Janata, Chemical Modulation of the Electron Work Function, Anal. Chem. 63 (1991) 2546-2550.

DOI: 10.1021/ac00022a003

Google Scholar

[51] N. Bagga, and S.K. Sarkar, An Analytical Model for Tunnel Barrier Modulation in Triple Metal Double Gate TFET, IEEE Trans. Electron Devices, vol. 62, no. 7, p.2136–2142, July. (2015).

DOI: 10.1109/ted.2015.2434276

Google Scholar

[52] F. Hsu, H. Grinolds, Structure-enhanced MOSFET degradation due to hot electron injection, IEEE Trans. Electron Device Lett. 5 (1984) 71-74.

DOI: 10.1109/edl.1984.25836

Google Scholar