The Effect of Incorporation of Hydrocarbon Groups on Visible Photoluminescence of Thermally Treated Fumed Silica

Article Preview

Abstract:

Methyl, methoxy and alcoxy groups with different number of carbon atoms were chemically grafted onto the surface of fumed silica nanoparticles. After chemical modification the nanopowders were annealed in vacuum at 700 °C. The effect of the amount of carbon atoms in grafted hydrocarbon groups and type of bonding to silica surface (Si-C v.s. Si-O-C) were studied. It was demonstrated that carbon incorporation results in the development of broad band photoluminescence that covers the wholevisible spectral range. Increasing of carbon incorporation resulted in increasing of photoluminescence intensity and red shift of the photoluminescence band maximum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-88

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] S. Hayashi, M. Kataoka, and Yamamoto K. Photoluminescence Spectra of Carbon Clusters Embedded in SiO2. Jpn. J. Appl. Phys., Part 2, 32 (1993) L274-276.

DOI: 10.1143/jjap.32.l274

Google Scholar

[2] W. H. Green, K. P. Le, J. Grey, T. T. Au, M. J. Sailor, White Phosphors from a Silicate-Carboxylate Sol-Gel Precursor That Lack Metal Activator Ions, Science, 276 (1997) 1826-1828.

DOI: 10.1126/science.276.5320.1826

Google Scholar

[3] N. Yamada, Photoluminescence in carbon/silica gel nanocomposites. Supercarbon: Synthesis, Properties and Applications, Springer (1998): 211-225.

DOI: 10.1007/978-3-662-03569-6_16

Google Scholar

[4] A. Karakuscu, R. Guider, L. Pavesi, G. D. Soraru, Broad-band tunable visible emission of sol–gel derived SiBOC ceramic thin films. Thin Solid Films 519 (2011) 3822–3826.

DOI: 10.1016/j.tsf.2011.01.233

Google Scholar

[5] A. V. Vasin, Y. Ishikawa, S. P. Kolesnik, A. A. Konchits, V. S. Lysenko, A. N. Nazarov, and G. Yu. Rudko Light-emitting properties of amorphous Si: C: O: H layers fabricated by oxidation of carbon-rich a-Si: C: H films, Solid State Science 11 (2009).

DOI: 10.1016/j.solidstatesciences.2009.05.030

Google Scholar

[6] A. V. Vasin, Y. Ishikawa, N. Shibata, J. Salonen, and V. -P. Lehto , Strong white photoluminescence from carbon-incorporated silicon oxide fabricated by preferential oxidation of silicon in nano-structured Si: C layer, Jpn. J. Appl. Phys. 19 (2007).

DOI: 10.1143/jjap.46.l465

Google Scholar

[7] Y. Ishikawa, A. V. Vasin, J. Salonen, S. Muto, V.S. Lysenko, A.N. Nazarov, N. Shibata, V. -P. Lehto, Color control of white photoluminescence from carbon-incorporated silicon oxide. J. Appl. Phys. 104 (2008) 083522 (1-6).

DOI: 10.1063/1.3003079

Google Scholar

[8] A. Vasin, A. Rusavsky, A. Nazarov, V. Lysenko, G. Rudko, Y. Piryatinski, I. Blonsky, J. Salonen, E. Makila, S. Starik Excitation effects and luminescence stability in porous SiO2: C layers, Phys. Status Solidi A 209 (2012) 1015–1021.

DOI: 10.1002/pssa.201100815

Google Scholar

[9] D. Savchenko, E. Kalabukhova, A. Sitnikov, A. Vasin, S. Starik, O. Gontar, G. Rudko, A. Nazarov, V. Lysenko and V. Tertykh. Magnetic resonance and optical study of carbonized silica obtained by pyrolysis of surface compounds, Advanced Materials Research, 854 (2014).

DOI: 10.4028/www.scientific.net/amr.854.99

Google Scholar

[10] Y. Ishii, A. Matsumura, Y. Ishikawa, and Sh. Kawasaki, White Light Emission from Mesoporous Carbon–Silica Nanocomposites, Jpn. J. Appl. Phys. 50 (2011) 01AF06(1-4).

DOI: 10.1143/jjap.50.01af06

Google Scholar

[11] F. Fabbri, F. Rossi, M. Negri, R. Tatti, L. Aversa, S. Ch. Dhanabalan, R. Verucchi, G. Attolini, G. Salviati, Carbon doped SiOx nanowuire with a large yield of white emission, Nanotechnology, 25 (2014) 185704(1-8).

DOI: 10.1088/0957-4484/25/18/185704

Google Scholar

[12] H. Li, Zh. Kang, Y. Liu and Sh. -T. Lee, Carbon nanodots: synthesis, properties and applications, J. Mater. Chem., 22 (2012) 24230.

Google Scholar

[13] L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang, Xi Chen, Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications, Trends in Analytical Chemistry 54 (2014) 83.

DOI: 10.1016/j.trac.2013.11.001

Google Scholar

[14] J. Li, B. Tang, B. Yuan, L. Sun, X. -G. Wang, A review of optical imaging and therapy using nanosized grapheme and graphene oxide, Biomaterials 34 (2013) 9519.

DOI: 10.1016/j.biomaterials.2013.08.066

Google Scholar

[15] Sh. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang and B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective, Nano Research 8 (2015) 355.

DOI: 10.1007/s12274-014-0644-3

Google Scholar

[16] Y. Ruiz-Morales, HOMO-LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I, J. Phys. Chem. A 106 (2002) 11283.

DOI: 10.1021/jp021152e

Google Scholar

[17] M. Lonfat, B. Marsen, K. Sattler, The energy gap of carbon clusters studied by scanning tunneling spectroscopy, Chemical Physics Letters 313 (1999) 539.

DOI: 10.1016/s0009-2614(99)01085-4

Google Scholar

[18] K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Atomic and Electronic Structure of Graphene-Oxide, Nano Lett. 9 (2009) 1058.

DOI: 10.1021/nl8034256

Google Scholar

[19] T. Uchino, N. Kurumoto, and N. Sagawa, Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials, Phys. Rev. B 73 (2006) 233203.

DOI: 10.1103/physrevb.73.233203

Google Scholar

[20] L. Vaccaro, G. Vaccaro, S. Agnello, G. Buscarino, M. Cannas, Wide range excitation of visible luminescence in nanosilica, Sol. St. Comm. 150 (2010) 2278.

DOI: 10.1016/j.ssc.2010.09.025

Google Scholar